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In this paper we present the chaotic state of a LED as a diode element in a non linear LRD. Multisim is used to simulate the 
circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and 
Procaccia. The correlation and minimum embedding dimension ν and m respectively were calculated. Also the 
corresponding Kolmogorov entropy was calculated. 
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1. Introduction 
 
The research direction of dynamical chaos is 

gradually moving towards practical applications and there 
is a growing interest for chaotic signal generation sources. 
In regard to this, various circuits have been proposed. In a 
recent paper [1] we had study the chaotic RLD circuit We 
used a commercial diode type 1N4001GP as non linear 
element to produce chaos. Here we try to produce chaos 
using a common LED in its operation point.The complete 
circuit is very simple and its software simulated operation 
demonstrates how chaos can be generated.  We use 
MultiSim as the appropriate circuit simulation software 
since it is known to provide an interface adequately close 
to real implementation [2,3]. The rest of the paper is 
organized as following. In Section 2, we describe the 
considered circuit and discuss on its operation basics 
towards chaos when driven by a sinusoidal input signal. 
The corresponding time series analysis is presented in 
Section 3. Final comments are outlined in Section 4. 

 
2. Experimental 
 
A non autonomous chaotic circuit driven RL-LED 

circuit  shown in Fig 1 
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Fig. 1. RL-LED chaotic circuit in Multisim circuits 

simulation software. 

It consists of a series connection of an ac-voltage 
source, a linear resistor R1, a linear inductor L1 and a 
typical LED. 

The R1 is R1= 100 Ω in series with the LED. The 
circuit is driven by an input sinusoidal voltage with 
amplitude V1 as applied through an inductor L1=47mH. 
The simulated circuit operation is monitored by checking 
the voltage  across  resistor R1.  Fig.2 shows the simulation 
obtained chaotic time series of the output signal for input 
signal amplitude V1rms=7 volts and frequency f=10 KHz. 
 

 
 

Fig. 2. Output chaotic signal V=V(t) across resistor R1 
for the RL-LED circuit of Fig. 1 

 
 
3. Time series analysis 
 
We now proceed to the analysis of the obtained 

chaotic time series following the method proposed by 
Grassberger and Procaccia [4,5] and successfully applied 
in similar cases [6-9]. Moreover, according to Takens 
theory [10-11], the measured time series can be used to 
reconstruct the original phase space. At first, we calculate 
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the correlation integral C(r) for the simulated output signal 
for lim r 0 and N ∞ , generally as defined by [12]: 
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where Ν is the number of the corresponding time series 
points, W is the Theiler window [12], Η is the Heaviside 
function  [12], and  
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with m being the embedding dimension. Clearly, the 
summation in eq.(1) counts the number of pairs 
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vv

 for which the distance, i.e. the Euclidean norm, 

jl XX
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−  is less than r in an m dimensional Euclidean 

space. Here, the number of the experimental points is 
N=10896, while considering the m dimensional space, 
each vector lX

r
 will be given by [14]: 

 
 lX
r

={ V(ti), V(ti+τd), V(ti+2τd),..., V[ti+(m-1)τd]}    (3) 
 
and represent a point of the m dimensional phase space in 
which the attractor is embedded each time. Ιn eq.(3), τd is 
the time delay determined by the first minimum of the 
mutual information function I(τd) and defined as τd=lΔt 
with l=1,2,…,N and Δt=6.25μs is the sample rate. As 
shown in Fig.3, in our case the mutual information 
function I(τd) exhibits a local minimum at τd=5 time steps 
and, thus, we shall consider τd=5 as the optimum delay 
time. 
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Fig. 3. Average Mutual Information I(τd) vs. time delay τd. 

 
 

 
Next, we deal with parameter W which is the Theiler 

window. As Theiler pointed out if temporally correlated 
points are not neglected, spuriously low dimension 
estimate may be obtained [8-12]. However, since there is 
no concrete rule of how to choose W, it may take the first 
zero-crossing value of the correlation function CR(τd) , as 
suggested by Kantz and Schreiber [8-12]. This means that 
we can use the correlation length as a starting value for W  
[12]. As shown in Fig.4, the correlation length τc is equal 
to τc=5 and, thus, W= τc=5 time lags. Fig.4 also depicts a 
strong correlation between the data indicating the way past 
states affect the system’s current state. Hence, we can use 
these values for phase space reconstruction. 

 

0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
R

(τ
d)

τd

 
Fig. 4. Correlation function CR(τd) vs. time delay τd. 

 
 

With eq.(1) dividing the considered m dimensional 
phase space into hypercubes with a linear dimension r, we 
count all points with mutual distances less than r. Then, it 
has been proven [15-18] that if the attractor is a strange 
one, the correlation integral will be proportional to rν, 
where v is a measure of the attractor’s dimension called 
correlation dimension. By definition, the correlation 
integral C(r) is the limit of correlation sum of eq.(1) and is 
numerically calculated as a function of r from eq.(1) for 
embedding  dimensions m=1,...,10.  Fig.5 depicts the 
relation between the logarithms of correlation integral C(r) 
and r for different embedding dimensions m. As seen in 
Fig.6, the slopes v of the lower linear parts of these log-log 
curves provide all necessary information for characterizing 
the attractor. Then, in Fig.7, the corresponding average 
slopes v are given as a function of the embedding 
dimension m indicating that for high values of m, v tends 
to saturate at the non integer value of v=2.23. For this 
value of v, the minimum embedding dimension can be 
mmin=3 [12], and thus, the minimum embedding dimension 



M. P. Hanias, L. Magafas, J. Kalomiros 

 
128 

of the attractor for one to one embedding will be equal to 
3. 
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Fig. 5. Relation between logC(r) and logr for different 
embedding dimensions m. 
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Fig.6. The corresponding slopes and scaling region of Fig.5. 
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Fig. 7. Correlation dimension v vs. embedding dimension m. 
 
 

Following the above and in order to get accurate 
measurements of the strength of the chaos present in the 

oscillations of the simulated output signal, we introduce 
the Kolmogorov entropy. According to  [12], the method 
followed so far also leads to an estimate of the 
Kolmogorov entropy, i.e. the correlation integral C(r) 
scales with the embedding dimension m, since: 

 
2~ Km deC(r) τ−         (4) 

 
where K2 is a lower bound to the Kolomogorov entropy. 
Fig.8 shows the relation between K2 and the logarithm of r 
for different embedding dimensions m, while the plateau, 
indicates that K2=0.52 bit/s, meaning that there is a steady 
loose of information at a constant rate given by K2. 
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Fig. 8. Kolmogorov entropy vs. logr for embedding 
dimensions m=2,…,10. 

 
 
5. Conclusion 
 
The scaling behaviour of the correlation integral and 

the saturation of correlation dimension ν with increasing 
embedding dimensions m reflect low dimensionality. The 
strange attractor that governs the phenomenon has a 
correlation dimension v=2.23 stretching and folding in a 3 
dimension phase space. Thus, the number of degrees of 
freedom of the whole domain structure is limited at 3 and 
this results in the low value of the correlation dimension. 
The LED exposes chaotic behaviour even if it works in its 
operation point. In this work, the obtained simulation 
results indicate that the proposed circuit can be used to 
generate chaotic signal, in a light emitting manner, useful 
in code and decode applications. 
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