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Abstract—The  hardware/software  implementation  of  a  novel 
image acquisition system, designed to host advanced processing 
techniques,  is  introduced.  The  system  is  suitable  for  robotic 
vision  applications,  such  as  stereo  image  processing,  visual 
odometry etc. The architecture is based on a Cyclone IV Altera 
FPGA device that constitutes the main processing unit and on a 
32–bit  Microchip  PIC32  microcontroller  as  a  complementary 
processor.  The  microcontroller  undertakes  peripheral  control 
tasks, relieving valuable resources from the FPGA. The system 
can capture image data simultaneously from two CMOS sensors 
and  store  necessary  image  rows  in  FPGA's  on  chip  memory. 
Moreover,  it  uses  a  FIFO-to-USB module  to  transfer  plain  or 
processed  image  data  to  a  host  computer.  The  system  also 
supports  VGA  connectivity.  Operational  tasks  such  as  frame 
grabbing, image processing and communication with high-speed 
USB  module  are  implemented  in  VHDL.  A  host  computer 
interface  has  also  been  developed  in  order  to  test  the  overall 
system in action. The system is evaluated in terms of real-time 
performance and the advantages emanating from the proposed 
architecture are discussed. 
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I.  INTRODUCTION

Over the last decades image processing techniques evolved 
rapidly providing continuously better results on various tasks. 
On the other hand they demand increasingly more resources 
from computational systems. Parallel processing is the basis for 
accelerating iterative algorithms that are comprised of complex 
computations,  like  convolution,  Fourier  Transforms  or  other 
DSP operations. Evolution of FPGA technology with its ability 
for  run-time  reconfiguration  has  opened  new  horizons  to 
embedded programmers  and designers  [1].  As a result  more 
researchers choose FPGAs to host their designs [2-4].

The target platform and the development software tools for 
every  potential  project  are  always  two  main  design  issues. 
FPGA  manufacturers  and  also  third  party  vendors  have 
produced  numerous  development  boards  with  various 
specifications. New versions of software development tools are 

often  released  by  manufacturers  in  order  to  support  new 
devices and to fix bugs in older versions.

In this paper we propose a custom low-cost circuit board 
appropriate for real-time machine vision and control tasks. The 
board is based on Altera's  Cyclone IV family FPGAs and is 
minimally equipped with peripheral devices, allowing a large 
number of pins and chip resources to be used for acquisition 
and  processing  tasks.  Implemented  input-output  peripherals 
include a frame-grabber from a CMOS image sensor, a USB 
controller  for  host  communication  and  a  VGA  controller. 
Frame-grabbing  and  host-communication  functions  were 
among the first to be developed for our custom hardware board 
since they are necessary for testing, debugging, monitoring and 
demonstrating purposes.  An on-chip dual-clock RAM memory 
has  also  been  included  in  the  main  architecture.  Additional 
peripheral  functionality  and  complementary  processing  is 
supported  using  a  Microchip  32-bit  PIC  microcontroller. 
Relieving  the  FPGA  device from  an  overhead  of  fixed 
additional  controllers,  like  ADC  and  DAC  converters  or 
SDRAM  external  memory  interfaces,  gives  a  flexibility  to 
dedicate  more  resources  on  the  requested  task.  As  a 
consequence of the adopted design concept, the total system's 
cost  is  maintained  very  low.  The  expenditure  for  a  special 
purpose  commercial  development  board,  dedicated  to  video 
processing, can rise to hundrends or even a few thousands of 
euros, which is much more than the final cost of the proposed 
custom system.

The  basic  input-output  and  processing  stages  of  the 
proposed  system-on-a-chip  are  custom-designed  in  VHDL, 
which is standard for research and industry. For mere synthesis 
and  configuration  the  standard  Altera  Quartus  II  software 
platform is used. We avoid the use of more sophisticated tools 
for  system-on-a-chip  design,  like  Qsys,  which  may  shorten 
design-cycle but on the other hand are often heavily dependent 
on commercial  controllers and IP cores.  In  this way,  system 
development is maintained unaffected from software updates 
and  compatibility  issues  that  may  arise  between  software 
versions. Also, the cost overhead associated with the purchase 
of copyrighted intellectual property (IP) is avoided.



Following  from  the  above  considerations,  the  main 
contribution  of  this  paper  is  twofold.  On  the  one  hand  the 
development of  a reconfigurable platform capable of hosting 
advanced image processing and control applications, with the 
lowest possible resources, is described. The system is based on 
custom  controllers  for  frame  grabbing,  USB  or  VGA 
communication  and  also  allocates  adequate  resources  for  a 
minimal on-chip RAM memory. An on-board microcontroller 
expands the processing capabilities and peripheral functionality 
of the board allowing for hardware/software co-design. On the 
other hand, the total cost of the system is kept at a very low 
level. The choice of a low cost FPGA device, the small cost of 
the  microcontroller  chip  and  the  avoidance  of  purchasing 
expensive copyrighted IP cores  give the opportunity to limit 
research funding only to the mandatory.

The rest of the paper is organized as follows. In Section II 
the  system's  hardware  architecture  is  presented  and  details 
about  the  system  components  are  provided.  The  inter-
connectivity between system stages is analytically explained. 
In  Sections  III  and  IV  the  image  acquisition  stage  and  the 
asynchronous communication with FIFO-to-USB module are 
analyzed in detail. In Section V an implementation of several 
trivial  image processing  tasks,  namely edge detection,  mean 
value and Gauss image filters is presented, as a demonstration 
of the functionality of the proposed board. Section VI presents 
experimental  results  from  the  aforementioned  functions.  An 
evaluation of the system is presented in Section VII, in terms of 
resource  usage  and  frame  rates.  Advantages  of  the  system 
architecture and future work are also discussed. Section VIII 
concludes the paper.

II. HARDWARE ARCHITECTURE

The system hardware follows a modular architecture. This 
means that every capability incorporated in the system requires 
an  appropriate  hardware  interconnection  module.  Since  we 
have a custom system every hardware module will be custom 
too. The block diagram of the system is depicted in Fig. 1.

Figure 1. The block diagram of the hardware architecture.

The  main  processing  unit  is  consisted  of  a  Cyclone  IV 
EP4CE22E22C7 Altera  FPGA device,  its  necessary  external 
components such as voltage regulators, decoupling capacitors, 
crystal  oscillator  and  two  header  connectors  for  device 
configuration. Voltage regulators produces three voltage levels 
from the main power source. FPGA core needs 1.2V for proper 
operation, internal PLL supply circuits demand 2.5V and the 

third voltage was specified at 3.3V for use with FPGA's I/O 
interface. A 50 MHz crystal oscillator provides the main clock 
for FPGA's internal synchronous operations. The first header 
connector is for JTAG interface and is mainly used as long as 
development  is  in  progress.  The  second  one  is  for  FPGA 
configuration with serial configuration memory (Active Serial 
interface)  and  can  be  used  when  development  has  been 
finalized.  The  above  two  headers  have  been  designed  for 
interconnection with USB Blaster Download Cable. Moreover 
all  I/O  FPGA pins  are  connected  to  four  additional  header 
connectors that can be considered as board expansion slots.

The PIC32 microcontroller has also four header connectors 
used as expansion slots for I/Os. It is currently connected to the 
I2C interface of the CMOS image sensors. The communication 
between the FPGA device and the microcontroller is attained 
using  free  I/Os  from  both  chips.  If  there  is  no  need  for 
exchanging information they can be disconnected from each 
other in order to preserve I/O resources.

For capturing image data the 5 Mpixel MT9P031 CMOS 
color  image  sensor  from  Aptina  Imaging  on  the 
MT9P031I12STCH header board was used. The header board 
consists  of  the  MT9P031,  suitable  lens  and  all  the  external 
components the image sensor needs in order to be functional. 
The sensor has a parallel digital interface for transmitting data 
and a serial I2C interface for configuration. Internal ADC has 
12-bit resolution, providing 4096 color scales.  In our system 
we use the 8 most significant bits from the ADC, since they are 
adequate  for  our  current  research  purposes.  Interconnection 
with the FPGA device includes data signals (D3 to D11) and 
control  signals,  frame  valid  (FV),  line valid  (LV)  and pixel 
clock (PIXCLK). The interconnection between image sensor, 
FPGA device and microcontroller is depicted in Fig. 2.

Figure 2. Interconnection FPGA-image sensor-microcontroller.

A  desirable  and  useful  capability  for  every  image 
acquisition,  processing  and  control  system  is  transmitting 
processing results to a personal computer. In many cases they 
can be used for further analysis, evaluation or as visual input 
for computer-based robotic algorithms. In order to incorporate 
this feature to our system we used the UM232H FIFO-to-USB 
module  from  FTDIChip.  It  is  based  on  FT232H  chip  and 
provides USB2.0 high speed connectivity supporting various 
operation modes. Control and bulk transfers according to USB 
protocol  are  hardwired.  All  necessary descriptor  information 
for the enumeration procedure is saved on external EEPROM 
by the manufacturer at production time. At this phase of our 
research,  the  USB  module  is  configured  for  asynchronous 
operation which supports up to 8 Mbytes/s transfer rate. In this 
operation mode the associated signals are eight data bits and 
four control signals TXE#, RXF#, WR# and RD#. The sharp 
mark on the right of every signal declares that they are active 
low. TXE shows if USB module can accept transmit data and 
RXF shows if there are available data to be read. When signals 
WR and RD are active, write and read internal sequences are 



launched respectively.  In  Fig.  3 the interconnection between 
the USB module and the FPGA device is presented.

Figure 3. Interconnection between FPGA and FIFO-to-USB.

Real-time image processing applications require a rate of 
many frames per second. Demonstration and testing purposes 
often demand fast image displaying on a screen. Even a fast 
connection like USB in conjunction with a very fast personal 
computer may fail to respond timely to a task like this. It  is 
well known that in real-time applications computers may fail 
due  to  a  huge  load  of  concurrent  processes.  Equipping  the 
board with VGA connectivity can be a good solution to this 
issue.  In  order  to  support  the  aforementioned  capability  a 
custom  hardware  module  was  designed  and  implemented, 
comprised  of  the  ADV1723  high  speed  video  DAC  from 
Analog  Devices.  In  Fig.  4  the  interconnection  between  the 
custom module and the FPGA device is  depicted.  There are 
three 8-bit data buses that pass color information to the VGA 
module.  Timing  synchronization  (which  is  also  referred  as 
Horizontal  and  Vertical  Synchronization)  is  obtained  using 
control  signals HS and VS. The VGA clock depends on the 
resolution  we  choose  to  display  or  on  the  supported  screen 
resolution.

Figure 4. Interconnection between FPGA and VGA module.

III. THE IMAGE GRABBER

The principal prerequisite for every task we implement is 
frame  grabbing.  Every  other  functionality  receives  image 
frames as  input.  The Frame Grabber  has been developed in 
VHDL but before analyzing the implementation details we first 
examine how the CMOS image sensor produces data.

MT9P031 outputs color component information of image 
pixels  in  a  progressive  scan.  Pixel  data  start  from top right 
corner of the first row and end up to the bottom left corner of 
the last row. Intervals between consecutive rows are referred as 
horizontal blanking and between consecutive frames as vertical 
blanking.  Control  signals  FV  and  LV  declare  when  sensor 
outputs  data.  When FV and LV signals  are  noticed '1'  then 
sensor launches pixel data on every rising edge of PIXCLK. 
Output data are considered to be valid and can be read from 
FPGA on the next falling edge of PIXCLK. MT9P031 outputs 
image data using Bayer  encoding.  Bayer  encoding describes 
every pixel by reducing color information to one byte instead 
of three. Even rows use the pattern Green-Red-Green-Red and 
odd rows use the pattern Blue-Green-Blue-Green. When image 
is fully read then we can extract  RGB color information for 
every pixel from its neighbors. The pattern usually is referred 
to as Color Filter Array (CFA) and the procedure of extracting 

full color information is called demosaicing. The readout order 
is  presented  in  Fig.  5  and  the  timing  diagram of  an  image 
readout is depicted in Fig. 6.

Figure 5. Readout order of Bayer encoding.

Figure 6. Timing diagram of an image readout.

The Frame Grabber is implemented in VHDL using state 
machines. The clock used for the state machines is PIXCLK 
and  is  derived  from  the  image  sensor.  The  flow  of  state 
machines is depicted in Fig. 7.

Synchronization

FV=1

Vertical Blanking

FV=0

Horizontal Blanking

FV=0

LV=0

FV=1

Valid Image Data

LV=1LV=1

LV=0
FV=0

Figure 7. Image readout state machines.

In the “Synchronization” state the system just waits. This 
state has been added to enforce the FPGA device to wait until 
the next frame generation in case that power was applied to the 
FPGA device while the sensor was already streaming image 
data at an intermediate point of a frame. When FV signal is 
asserted '0' then this declares that the sensor is in the vertical 
blanking  interval,  which  means  that  the  FPGA  is  now 
synchronized and can proceed to the “VerticalBlanking” state. 
When  FV  is  asserted  '1'  then  the  FPGA  enters  into 
“HorizontalBlanking” state and if LV is also asserted '1' then it 
enters into “ValidImageData” state. Now, the device can read 
sensor's  output,  as sensor data are considered valid at  every 
falling  edge  of  PIXCLK.  When  the  sensor  completes 
transmission of the first row's pixel data then asserts LV to '0' 
and the FPGA device enters into “HorizontalBlanking” state. 
When horizontal blanking interval is over, LV is asserted again 
to '1' and the FPGA enters back to the “ValidImageData” state. 



This  sequence  will  continue  until  sensor  completes 
transmission of the last image row. Afterwards LV and FV are 
asserted  '0'  consecutively  and  the  FPGA  enters  first  into 
“HorizontalBlanking” state and finally into “VerticalBlanking” 
state.  The FPGA device remains there until the sensor starts 
sending the next frame.

Image  data  are  stored  in  on-chip  memory.  We  allocate 
32Kbytes of Cyclone's internal memory to store data coming 
from two image sensors (16Kbytes for each one). The on-chip 
RAM is not enough to store entire frames. As a consequence 
when the buffer  is  full  then subsequent  data overwrite  prior 
data.  This  is  not  a  problem  since  our  system  supports  full 
parallelism of processing  operations.  This  means  that  stored 
data are processed and sent to the output device before RAM 
becomes insufficient. Generally the following sequence takes 
place inside the FPGA device:

• Read  pixel  data  and  save  to  the  temporary  register 
block (to be used for potential processing purposes)

• Read next pixel data and save to the temporary register 
block – previous data saved to the temporary register 
block are stored to RAM at location 1

• Read next pixel data and save to the temporary register 
block – previous data saved to the temporary register 
block are stored to RAM at location 2 – data stored at 
location 1 are sent to the output device

• Read next pixel data and save to the temporary register 
block – previous data saved to the temporary register 
block are stored to RAM at location 3 – data stored at 
location 2 are sent to the output device

When all memory locations are full of data then the above 
sequence  starts  again  from  the  first  location  overwriting 
previous  records.  Parallelism  provides  satisfactory 
functionality even if we do not have external RAM memory at 
our disposal.

IV. USB COMMUNICATION

It is often the case that processed image results are needed 
to be available to a personal computer. They can be input to a 
computer-based algorithm for further processing or just need to 
be stored for  further  evaluation. By transmitting results to a 
personal computer, debugging purposes can be served as well.

This  capability  is  incorporated  to  our  system  providing 
USB  connectivity  with  a  computer.  The  system  uses  the 
UM232H FIFO-to-USB module. It takes over all low and high 
level  operations  for  a  bidirectional  communication  with 
computer's  USB port.  It  uses  a  First  In  First  Out  buffer  for 
transmitted  or  received  data  and  also  has  a  specific 
communication interface for write and read purposes. At this 
point of our research we use the USB module in asynchronous 
operation mode. This mode does not need a clock to exchange 
data. The timing diagram for a typical write is shown in Fig. 8 
and for a typical read is presented in Fig. 9.

The FPGA device must assert interface signals according to 
write  or  read  sequence  in  order  to  transmit  or  receive  data. 

Apart  from  the  correct  order,  signal  assertion  is  subject  to 
timing  constraints.  Timing  constraints  are  defined  from 
manufacturer and for successful transactions must be adhered 
precisely. Signal timing constraints related to read and write 
procedures are quoted in Table I.

Figure 8. Asynchronous FIFO interface – WRITE signal 
waveforms.

Figure 9. Asynchronous FIFO interface – READ signal 
waveforms.

TABLE I. TIMING CONSTRAINTS OF UM232H WRITE AND READ 
SEQUENCES

Time Description Min Max Units

T1 RD# inactive to RXF# 1 14 ns

T2 RXF# inactive after RD# cycle 49 ns

T3 RD# to DATA 1 14 ns

T4 RD# active pulse width 30 ns

T5 RD# active after RXF# 0 ns

t6 WR# active to TXE# inactive 1 14 ns

t7 TXE# active to TXE# after WR# cycle 49 ns

t8 DATA to WR# active setup time 5 ns

t9 DATA hold time after WR# inactive 5 ns

t10 WR# active pulse width 30 ns

t11 WR# active after TXE# 0 ns

In our application we concentrate on the write interface. A 
suitable controller has been implemented in VHDL using state 
machines. The clock used for this controller is 50MHz and is 
derived from the external crystal oscillator. The state machines 
are optimized for this execution speed. The write sequence is 
depicted in Fig. 10.

At the beginning, the FPGA controller stays at “Idle” state. 
In  this  state  no  data  are  sent.  CMD constitutes  an  internal 
control  signal  which is asserted  to '1'  when FPGA wants to 
transmit  data.  When the  CMD signal  is  asserted  '1'  from a 
process, then the controller enters to “Send” state. It  stays in 
that state for as long as the TXE# signal is asserted '1', meaning 
that UM232H is busy or the FIFO buffer is full. When TXE# is 



noticed '0' the controller asserts the WR signal to '0', launches 
data on the data bus and enters  into state  “Intermediate  1”. 
Transition to state “Intermediate 2” occurs on the next clock 
pulse and finally the procedure arrives to the “Complete state”. 
It waits there until the CMD signal is asserted '0' by the internal 
process that asserted it '1' and then it returns to “Idle” state. The 
overall  state  machines  sequence  is  designed  to  be  fully 
compatible with UM232H write sequence.

Idle

CMD=0

SendCMD=1

Intermediate 1

TXE=1

TXE=0

Complete

Intermediate 2

CMD=0
CMD=1

Figure 10. WRITE sequence State Machines.

From  the  host  computer  side,  an  appropriate  software 
application  has  been  developed  in  Visual  Basic.  This 
application  receives  image  data  and  displays  them  on  the 
screen. It uses D2XX vendor's driver for USB communication. 
The basic idea is that the host application checks if there are 
incoming  data  every  time  a  timer  expires,  which  is 
approximately  every  10  ms. If  there  are  available  data,  the 
application  reads  them  and  reconstructs  the  image.  When 
image reconstruction is completed, the software shows it up in 
a picture-box component. When a new frame is received the 
previous  loaded  image  in  the  picture-box  is  refreshed. 
Depending on an external stimulus applied to our board, the 
host  application can  display the  output  result  from different 
task-logic blocks. As discussed in the following paragraph, an 
example  is  a  number  of  different  image  filters  that  are 
implemented  simultaneously  in  the  FPGA  device.  Different 
stimuli are obtained by using three push-button switches.

V. IMPLEMENTATION OF IMAGE FILTERS

As we have discussed in previous sections parallelism not 
only accelerates operations but provides flexibility in hardware 
architecture.  In  our implementation parallelism of processing 
algorithms  is  performed  inside  “ValidImageData”  state. 
Parallel operations can start when necessary data are pipelined 
inside the FPGA device. The target function specifies the size 
of pipelined data according to its requirements. In order to test 
our system and evaluate the performance we have developed 
certain simple tasks such as a Mean filter, a Gauss filter and an 
Edge Detector. The aforementioned tasks are usually required 
when we study advanced topics like stereo processing, feature 
extraction or object recognition.

These  three  filters  operate  simultaneously  in  our  VHDL 
implementation.  Depending  on  external  stimulus  our  system 
forwards the result of the selected filter to the output. Below, 
the  3x3 kernel  matrices  applied  on input  image  are  quoted. 
Kernel M is for mean filter, G is for Gauss filter and P1, P2 are 
Prewitt masks for Edge Detector.

M =[1 1 1
1 1 1
1 1 1] ,G=[1 2 1

2 4 2
1 2 1 ]

P1=[
1 1 1
0 0 0

−1 −1 −1] ,P2=[
−1 0 1
−1 0 1
−1 0 1]

Parallelism requires the pixel intensities of the 3x3 image 
area,  where  the  convolution  kernel  is  applied,  to  be 
simultaneously  available.  As  we  have  already  mentioned, 
sensor  outputs  color  component  information  using  Bayer 
encoding. The total procedure requires two intermediate steps 
in  order  to  complete  processing.  The first  step  is  to  extract 
pixel intensities from Bayer encoded data for every 3x3 image 
window and the second step is to apply the filter mask. The 
hardware structure is presented on Fig. 11.

Figure 11. Hardware structure in FPGA for parallelism.

Parallelism is  achieved  using  RAM-based  shift  registers. 
Sensor data are pipelined into shift registers. They are designed 
in  a  specific  way  which  outputs  image  data  from  3x3 
subwindows  in  a  progressive  scan.  Assuming  that  shift 
registers are full of data the pipelining procedure is described 
by the following steps:

• Sensor outputs pixel data to shift registers in step 1 and 
demosaics/extracts intensity from the central pixel that 
belongs to image's subwindow 1

• Sensor outputs next pixel data to shift registers in step 
1  and  demosaics/extracts  intensity  from  the  central 
pixel that belongs to image's subwindow 2 – intensity 
pixel data are pipelined into shift registers in step 2 and 
image filter applied on image's subwindow 1

• Sensor outputs next pixel data to shift registers in step 
1  and  demosaics/extracts  intensity  from  the  central 
pixel that belongs to image's subwindow 3 – intensity 
pixel data are pipelined into shift registers in step 2 and 
image filter applied on image's subwindow 2 – filter 
results on subwindow 1 are saved to RAM

• Sensor outputs next pixel data to shift registers in step 
1  and  demosaics/extracts  intensity  from  the  central 
pixel that belongs to image's subwindow 4 – intensity 
pixel data are pipelined into shift registers in step 2 and 
image filter applied on image's subwindow 3 – filter 
results on subwindow 2 are saved to RAM



The  above  procedure  is  being  executed  continuously  until 
image subwindows scan entire image.

The function Demosaicing in step 1 can be implemented 
using several  ways.  In  literature many algorithms have been 
proposed [6]. One very simple algorithm is to use the mean 
value of neighboring colors.  Depending on the known color 
component information of a pixel they are named as Gr, Gb, R 
or B, as in Fig. 5. Table II presents how full color information 
is calculated in every case. After the Demosaicing procedure 
completes calculations for a pixel that belongs to row  i and 
column j, intensities are extracted using (1).

I ( j , i)=(R e d+G r e en+B l ue) /3 (1)

TABLE II. DEMOSAICING PIXEL DATA

PIXEL Full Color Component calculation

Gr

R e d=( R( j−1, i)+R( j+1, i))/2

G r e e n=Gr

B l u e=( B( j ,i−1)+B( j , i+1))/2

Gb

R e d=( R( j , i−1)+R( j , i+1))/2

G r e e n=Gb

B l u e=( B( j−1, i)+B( j+1,i))/2

R

R e d=R

G1=Gr ( j−1, i)+Gr ( j+1, i)
G2=Gb( j , i−1)+Gb( j , i+1)
G r e e n=(G1+G 2)/4

B1=B( j−1, i−1)+B( j−1,i+1)
B2=B( j+1, i+1)+B( j+1, i−1)

B l u e=( B1+B2)/ 4

B

R1=R( j−1,i−1)+R( j−1, i+1)

R2=R( j+1, i−1)+R( j+1, i+1)
R e d=( R1+R2)/4

G1=Gb( j−1, i)+Gb( j+1, i)
G2=Gr ( j , i−1)+Gr ( j , i+1)

G r e e n=(G1+G 2)/4

B l u e=B

Intensity  calculations  and  filtering  are  carried  out 
concurrently  while  FPGA  is  reading  subsequent  pixel  data. 
When  FPGA  reads  data  from  row  i it  also  completes 
processing  algorithms  on  previous  rows.  From  now  on  we 
follow the convention of naming a pixel that is at ith row and jth 

column  as  pj,i.  Let  us  consider  the  example  of  applying 
aforementioned filters on a 3x3 image window to describe how 

this mechanism works in detail. A random window of input 
image is illustrated in Fig. 12. Let us focus on the window that 
is  highlighted  with  bold  borders.  This  is  a  4x4  window. 
Assume that the bottom right pixel of that window belongs to 
the random row i and column j of the input image.

In order to apply a filter mask at pj-2,i-2 we need to know 
pixel intensities from a 3x3 window the bottom right pixel of 
which is pj-1,i-1. This means that the processing elements must 
have  already  calculated  the  intensity  of  pj-1,i-1 and  have  it 
available for use. This premises that demosaicing of pj-1,i-1 has 
been completed. In order to demosaic pj-1,i-1 and then extract the 
intensity of that pixel we need to know the color component 
from the 3x3 window of which the bottom right pixel is p j,i. 
This implies that only when FGPA has readout pj,i it will be 
able to perform filtering computations on pj-2,i-2. Hence FPGA 
must have available pixel information that are being in the bold 
4x4 window to be able to apply the processing algorithm on 
pixel pj-2,i-2.

Figure 12. Image window necessary for 3x3 convolutions.

Mean filter implementation for pixel pj-2,i-2 includes first the 
calculation of the following matrix.

M p j−2, i−2
=[

1⋅I j−3, i−3 1⋅I j−2, i−3 1⋅I j−1, i−3

1⋅I j−3, i−2 1⋅I j−2, i−2 1⋅I j−1, i−2

1⋅I j−3, i−1 1⋅I j−2, i−1 1⋅I j−1, i−1
]

Naming every element of matrix  M as  mx,y, where  x=1,2,3 
and y=1,2,3 the output image is produced as in (2).

I ' j−2, i−2=
1
9
⋅∑

x=1

3

∑
y=1

3

m y , x (2)

Gauss  filter  implementation  for  pixel  pj-2,i-2 includes  the 
calculation of the following matrix.

G p j−2, i−2
=[

1⋅I j−3, i−3 2⋅I j−2, i−3 1⋅I j−1, i−3

2⋅I j−3, i−2 4⋅I j−2, i−2 2⋅I j−1,i−2

1⋅I j−3, i−1 2⋅I j−2, i−1 1⋅I j−1, i−1
]

Naming every element of matrix  G as  gx,y, where  x=1,2,3 
and y=1,2,3 the output image is produced as in (3).



I ' j−2, i−2=
1
16

⋅∑
x=1

3

∑
y=1

3

g y , x (3)

Edge  Detector  implementation  is  slightly  different  from 
Mean and Gauss filters. First two Prewitt matrices  P1 and  P2 

are calculated for the pixel pj-2,i-2.

P(1) p j−2,i−2
=[

−1⋅I j−3,i−3 0⋅I j−2,i−3 1⋅I j−1,i−3

−1⋅I j−3,i−2 0⋅I j−2,i−2 1⋅I j−1, i−2

−1⋅I j−3,i−1 0⋅I j−2,i−1 1⋅I j−1,i−1
]

P(2) p j−2, i−2
=[

1⋅I j−3, i−3 1⋅I j−2, i−3 1⋅I j−1, i−3

0⋅I j−3, i−2 0⋅I j−2, i−2 0⋅I j−1, i−2

−1⋅I j−3, i−1 −1⋅I j−2, i−1 −1⋅I j−1, i−1
]

Considering every element of matrix P1 and P2 as p(1)x,y and 
p(2)x,y where x=1,2,3 and y=1,2,3 the output image is produced 
as in (4).

I ' j−2, i−2={ 0 ,∣∑
x=1

3

∑
y=1

3

p(1) x , y∣+∣∑
x=1

3

∑
y=1

3

p(2 )x , y∣<T

255 ,∣∑
x=1

3

∑
y=1

3

p(1) x , y∣+∣∑
x=1

3

∑
y=1

3

p (2 )x , y∣>T }
(4)

The magnitude of image gradient is produced as the sum of 
the absolute values of horizontal and vertical gradients instead 
of the square root of the sum of the squares of matrix elements. 
It  is  simpler,  produces  similar  results  and  requires  less 
hardware resources. In order to receive a binary edge image a 
thresholding  procedure  is  applied.  The gradient  threshold  is 
defined as T=40.

VI. EXPERIMENTAL RESULTS

In this section we present image results that are produced 
setting the overall system in action. All images have resolution 
640x480. In Fig. 13 test results are presented from the Frame 
Grabber.  There are two images.  The first image is in Bayer 
encoding  as  produced  by  the  sensor  and  displayed  on  the 
computer screen without any further  processing.  The second 
image is derived by demosaicing the first image. Let us note 
that extraction of full color information has been placed on the 
computer software in order to reduce transmit load from the 
FPGA device to the computer. Fig. 14 shows results from the 
Edge  Detector.  The  first  image  is  the  output  of  the  Frame 
Grabber  in  gray  scale.  The  second  is  the  image  produced 
applying the Prewitt masks and the thresholding procedure.

Figure 13. Image results from the Frame Grabber.

Figure 14. Image results from the Edge Detector.



VII. SYSTEM EVALUATION

Evaluation of a system is a function of many aspects. The 
proposed  custom system for  video  processing  was  basically 
motivated by the need of reduced overall cost in conjunction 
with  flexible  architecture.  Overall  performance  is  also  an 
important issue. The final prototype board is demonstrated in 
Fig.  15  and  is  actually  a  compromise  between  the  above 
objectives.  The  total  cost  of  the  system  is  about  60  euros, 
including  the  microcontroller,  FIFO-to-USB  module,  the 
Cyclone IV FPGA device and the serial configuration device. 
We consider this total cost to be very satisfactory.

Figure 15. The prototype FPGA board.

The  proposed  board  is  a  minimal  but  powerful  video 
processor that can employ only the essential system resources, 
while at the same time it can expand in a modular and flexible 
manner in order to comply with additional requirements. Part 
of  the  power  and  flexibility  is  found  in  the  proposed 
combination  of  a  reconfigurable  device  with  a  well  known, 
powerful 32-bit processor. A harware/software data and control 
interface  is  under  development  for  the  seamless  connection 
between the processor and the reconfigurable hardware.

Table III  gives  the necessary hardware  resources  for  the 
implementation  of  the  task  logic  presented  in  the  previous 
sections. In order to implement simultaneously a mean filter, a 
Gauss filter and a Prewitt edge detector we used less than 10% 
of the available logic elements and almost half the available 
on-chip  memory.  This  is  needed  for  a  frame  size  640x480 
while  for  smaller  images  with  half  VGA  resolution,  the 
necessary  memory bits  are  almost  75000.  The reported  low 
resource usage gives us the opportunity to add more features 
and task logic to our system. 

Let  us  note  that  the  VHDL  implementation  for  a  VGA 
controller  is  still  in  progress  and  therefore  the  required 
resources  are  not taken into account  in Table III.  The main 
limitation associated with VGA is relevant to the available I/O 
pins.  However,  the  flexibility  of  the  proposed  architecture 
allows excluding other supplementary capabilities in order to 
host additional features. A VGA port can be added by simply 
removing USB connectivity, since the output information can 
now be displayed on the VGA screen.

The implemented FPGA task logic is capable of processing 
162 frames per second in full VGA resolution or 650 half VGA 
frames per  second (fps),  with a crystal  oscillator at 50MHz. 
Practical  processing  frame  rate  is  much  more  limited.  The 
image sensor can capture at most 53 fps in VGA resolution. 

With  its  present  USB  configuration,  the  overall  system  in 
action sends to the computer 4 full VGA frames per second, or 
16 half VGA frames. In fact, the host application controlling 
USB connectivity in asynchronous USB mode, slows down the 
communication procedure. Using a more powerful computer or 
developing  more  sophisticated  software  can  lead  to  a  better 
overall  performance.  This  frame  rate  can  be  considered 
adequate for testing and debugging purposes or for evaluating 
and analyzing image results. 

TABLE III. RESOURCES NEEDED FOR FRAME RESOLUTION 640X480

Recources Available Used Percentage

Logic elements 22320 2000 9,00%

Pins (I/O) 80 42 52,50%

Memory bits 608256 290904 47,83%

VIII. CONCLUSIONS

A low-cost video-processing custom FPGA/microcontroller 
board, based on a flexible modular architecture is presented. 
The system features a Cyclone IV Altera device implementing 
some video processing task and a PIC32 microcontroller able 
to  support  peripheral  functions.  The  video  board  features  a 
frame grabber suitable for CMOS image sensors using Bayer 
encoding and a USB module, providing connectivity to a host 
computer  for  further  processing.  The  system  is  still  in 
experimental design phase and it is proved to be able to host 
task logic for basic image processing using only a fraction of 
the available resources. The cost of the proposed board is very 
low compared to existing commercial video kits. The system is 
expandable and is indented to host demanding machine vision 
and real-time control applications.
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