
Design and Implementation of a novel FPGA – based
Image Acquisition System with two CMOS Sensors

for Advanced Processing Techniques

John V. Vourvoulakis *
John Lygouras

Section of Electronics & Information Systems Technology
Department of Electrical & Computer Engineering,

Democritus University of Thrace,
Polytechnic school of Xanthi, Greece

* Corresponding author, e-mail address: jvourv@ee.duth.gr

John A. Kalomiros
Technological and Educational Institute of Serres,
Department of Informatics and Communications,

Terma Magnisias, 62100 Serres, Greece

Abstract—The hardware/software implementation of a novel
image acquisition system, designed to host advanced processing
techniques, is introduced. The system is suitable for robotic
vision applications, such as stereo image processing, visual
odometry etc. The architecture is based on a Cyclone IV Altera
FPGA device that constitutes the main processing unit and on a
32–bit Microchip PIC32 microcontroller as a complementary
processor. The microcontroller undertakes peripheral control
tasks, relieving valuable resources from the FPGA. The system
can capture image data simultaneously from two CMOS sensors
and store necessary image rows in FPGA's on chip memory.
Moreover, it uses a FIFO-to-USB module to transfer plain or
processed image data to a host computer. The system also
supports VGA connectivity. Operational tasks such as frame
grabbing, image processing and communication with high-speed
USB module are implemented in VHDL. A host computer
interface has also been developed in order to test the overall
system in action. The system is evaluated in terms of real-time
performance and the advantages emanating from the proposed
architecture are discussed.

Keywords; FPGA; CMOS image sensor; USB connectivity;
image processing; VHDL; hardware design

I. INTRODUCTION

Over the last decades image processing techniques evolved
rapidly providing continuously better results on various tasks.
On the other hand they demand increasingly more resources
from computational systems. Parallel processing is the basis for
accelerating iterative algorithms that are comprised of complex
computations, like convolution, Fourier Transforms or other
DSP operations. Evolution of FPGA technology with its ability
for run-time reconfiguration has opened new horizons to
embedded programmers and designers [1]. As a result more
researchers choose FPGAs to host their designs [2-4].

The target platform and the development software tools for
every potential project are always two main design issues.
FPGA manufacturers and also third party vendors have
produced numerous development boards with various
specifications. New versions of software development tools are

often released by manufacturers in order to support new
devices and to fix bugs in older versions.

In this paper we propose a custom low-cost circuit board
appropriate for real-time machine vision and control tasks. The
board is based on Altera's Cyclone IV family FPGAs and is
minimally equipped with peripheral devices, allowing a large
number of pins and chip resources to be used for acquisition
and processing tasks. Implemented input-output peripherals
include a frame-grabber from a CMOS image sensor, a USB
controller for host communication and a VGA controller.
Frame-grabbing and host-communication functions were
among the first to be developed for our custom hardware board
since they are necessary for testing, debugging, monitoring and
demonstrating purposes. An on-chip dual-clock RAM memory
has also been included in the main architecture. Additional
peripheral functionality and complementary processing is
supported using a Microchip 32-bit PIC microcontroller.
Relieving the FPGA device from an overhead of fixed
additional controllers, like ADC and DAC converters or
SDRAM external memory interfaces, gives a flexibility to
dedicate more resources on the requested task. As a
consequence of the adopted design concept, the total system's
cost is maintained very low. The expenditure for a special
purpose commercial development board, dedicated to video
processing, can rise to hundrends or even a few thousands of
euros, which is much more than the final cost of the proposed
custom system.

The basic input-output and processing stages of the
proposed system-on-a-chip are custom-designed in VHDL,
which is standard for research and industry. For mere synthesis
and configuration the standard Altera Quartus II software
platform is used. We avoid the use of more sophisticated tools
for system-on-a-chip design, like Qsys, which may shorten
design-cycle but on the other hand are often heavily dependent
on commercial controllers and IP cores. In this way, system
development is maintained unaffected from software updates
and compatibility issues that may arise between software
versions. Also, the cost overhead associated with the purchase
of copyrighted intellectual property (IP) is avoided.

Following from the above considerations, the main
contribution of this paper is twofold. On the one hand the
development of a reconfigurable platform capable of hosting
advanced image processing and control applications, with the
lowest possible resources, is described. The system is based on
custom controllers for frame grabbing, USB or VGA
communication and also allocates adequate resources for a
minimal on-chip RAM memory. An on-board microcontroller
expands the processing capabilities and peripheral functionality
of the board allowing for hardware/software co-design. On the
other hand, the total cost of the system is kept at a very low
level. The choice of a low cost FPGA device, the small cost of
the microcontroller chip and the avoidance of purchasing
expensive copyrighted IP cores give the opportunity to limit
research funding only to the mandatory.

The rest of the paper is organized as follows. In Section II
the system's hardware architecture is presented and details
about the system components are provided. The inter-
connectivity between system stages is analytically explained.
In Sections III and IV the image acquisition stage and the
asynchronous communication with FIFO-to-USB module are
analyzed in detail. In Section V an implementation of several
trivial image processing tasks, namely edge detection, mean
value and Gauss image filters is presented, as a demonstration
of the functionality of the proposed board. Section VI presents
experimental results from the aforementioned functions. An
evaluation of the system is presented in Section VII, in terms of
resource usage and frame rates. Advantages of the system
architecture and future work are also discussed. Section VIII
concludes the paper.

II. HARDWARE ARCHITECTURE

The system hardware follows a modular architecture. This
means that every capability incorporated in the system requires
an appropriate hardware interconnection module. Since we
have a custom system every hardware module will be custom
too. The block diagram of the system is depicted in Fig. 1.

Figure 1. The block diagram of the hardware architecture.

The main processing unit is consisted of a Cyclone IV
EP4CE22E22C7 Altera FPGA device, its necessary external
components such as voltage regulators, decoupling capacitors,
crystal oscillator and two header connectors for device
configuration. Voltage regulators produces three voltage levels
from the main power source. FPGA core needs 1.2V for proper
operation, internal PLL supply circuits demand 2.5V and the

third voltage was specified at 3.3V for use with FPGA's I/O
interface. A 50 MHz crystal oscillator provides the main clock
for FPGA's internal synchronous operations. The first header
connector is for JTAG interface and is mainly used as long as
development is in progress. The second one is for FPGA
configuration with serial configuration memory (Active Serial
interface) and can be used when development has been
finalized. The above two headers have been designed for
interconnection with USB Blaster Download Cable. Moreover
all I/O FPGA pins are connected to four additional header
connectors that can be considered as board expansion slots.

The PIC32 microcontroller has also four header connectors
used as expansion slots for I/Os. It is currently connected to the
I2C interface of the CMOS image sensors. The communication
between the FPGA device and the microcontroller is attained
using free I/Os from both chips. If there is no need for
exchanging information they can be disconnected from each
other in order to preserve I/O resources.

For capturing image data the 5 Mpixel MT9P031 CMOS
color image sensor from Aptina Imaging on the
MT9P031I12STCH header board was used. The header board
consists of the MT9P031, suitable lens and all the external
components the image sensor needs in order to be functional.
The sensor has a parallel digital interface for transmitting data
and a serial I2C interface for configuration. Internal ADC has
12-bit resolution, providing 4096 color scales. In our system
we use the 8 most significant bits from the ADC, since they are
adequate for our current research purposes. Interconnection
with the FPGA device includes data signals (D3 to D11) and
control signals, frame valid (FV), line valid (LV) and pixel
clock (PIXCLK). The interconnection between image sensor,
FPGA device and microcontroller is depicted in Fig. 2.

Figure 2. Interconnection FPGA-image sensor-microcontroller.

A desirable and useful capability for every image
acquisition, processing and control system is transmitting
processing results to a personal computer. In many cases they
can be used for further analysis, evaluation or as visual input
for computer-based robotic algorithms. In order to incorporate
this feature to our system we used the UM232H FIFO-to-USB
module from FTDIChip. It is based on FT232H chip and
provides USB2.0 high speed connectivity supporting various
operation modes. Control and bulk transfers according to USB
protocol are hardwired. All necessary descriptor information
for the enumeration procedure is saved on external EEPROM
by the manufacturer at production time. At this phase of our
research, the USB module is configured for asynchronous
operation which supports up to 8 Mbytes/s transfer rate. In this
operation mode the associated signals are eight data bits and
four control signals TXE#, RXF#, WR# and RD#. The sharp
mark on the right of every signal declares that they are active
low. TXE shows if USB module can accept transmit data and
RXF shows if there are available data to be read. When signals
WR and RD are active, write and read internal sequences are

launched respectively. In Fig. 3 the interconnection between
the USB module and the FPGA device is presented.

Figure 3. Interconnection between FPGA and FIFO-to-USB.

Real-time image processing applications require a rate of
many frames per second. Demonstration and testing purposes
often demand fast image displaying on a screen. Even a fast
connection like USB in conjunction with a very fast personal
computer may fail to respond timely to a task like this. It is
well known that in real-time applications computers may fail
due to a huge load of concurrent processes. Equipping the
board with VGA connectivity can be a good solution to this
issue. In order to support the aforementioned capability a
custom hardware module was designed and implemented,
comprised of the ADV1723 high speed video DAC from
Analog Devices. In Fig. 4 the interconnection between the
custom module and the FPGA device is depicted. There are
three 8-bit data buses that pass color information to the VGA
module. Timing synchronization (which is also referred as
Horizontal and Vertical Synchronization) is obtained using
control signals HS and VS. The VGA clock depends on the
resolution we choose to display or on the supported screen
resolution.

Figure 4. Interconnection between FPGA and VGA module.

III. THE IMAGE GRABBER

The principal prerequisite for every task we implement is
frame grabbing. Every other functionality receives image
frames as input. The Frame Grabber has been developed in
VHDL but before analyzing the implementation details we first
examine how the CMOS image sensor produces data.

MT9P031 outputs color component information of image
pixels in a progressive scan. Pixel data start from top right
corner of the first row and end up to the bottom left corner of
the last row. Intervals between consecutive rows are referred as
horizontal blanking and between consecutive frames as vertical
blanking. Control signals FV and LV declare when sensor
outputs data. When FV and LV signals are noticed '1' then
sensor launches pixel data on every rising edge of PIXCLK.
Output data are considered to be valid and can be read from
FPGA on the next falling edge of PIXCLK. MT9P031 outputs
image data using Bayer encoding. Bayer encoding describes
every pixel by reducing color information to one byte instead
of three. Even rows use the pattern Green-Red-Green-Red and
odd rows use the pattern Blue-Green-Blue-Green. When image
is fully read then we can extract RGB color information for
every pixel from its neighbors. The pattern usually is referred
to as Color Filter Array (CFA) and the procedure of extracting

full color information is called demosaicing. The readout order
is presented in Fig. 5 and the timing diagram of an image
readout is depicted in Fig. 6.

Figure 5. Readout order of Bayer encoding.

Figure 6. Timing diagram of an image readout.

The Frame Grabber is implemented in VHDL using state
machines. The clock used for the state machines is PIXCLK
and is derived from the image sensor. The flow of state
machines is depicted in Fig. 7.

Synchronization

FV=1

Vertical Blanking

FV=0

Horizontal Blanking

FV=0

LV=0

FV=1

Valid Image Data

LV=1LV=1

LV=0
FV=0

Figure 7. Image readout state machines.

In the “Synchronization” state the system just waits. This
state has been added to enforce the FPGA device to wait until
the next frame generation in case that power was applied to the
FPGA device while the sensor was already streaming image
data at an intermediate point of a frame. When FV signal is
asserted '0' then this declares that the sensor is in the vertical
blanking interval, which means that the FPGA is now
synchronized and can proceed to the “VerticalBlanking” state.
When FV is asserted '1' then the FPGA enters into
“HorizontalBlanking” state and if LV is also asserted '1' then it
enters into “ValidImageData” state. Now, the device can read
sensor's output, as sensor data are considered valid at every
falling edge of PIXCLK. When the sensor completes
transmission of the first row's pixel data then asserts LV to '0'
and the FPGA device enters into “HorizontalBlanking” state.
When horizontal blanking interval is over, LV is asserted again
to '1' and the FPGA enters back to the “ValidImageData” state.

This sequence will continue until sensor completes
transmission of the last image row. Afterwards LV and FV are
asserted '0' consecutively and the FPGA enters first into
“HorizontalBlanking” state and finally into “VerticalBlanking”
state. The FPGA device remains there until the sensor starts
sending the next frame.

Image data are stored in on-chip memory. We allocate
32Kbytes of Cyclone's internal memory to store data coming
from two image sensors (16Kbytes for each one). The on-chip
RAM is not enough to store entire frames. As a consequence
when the buffer is full then subsequent data overwrite prior
data. This is not a problem since our system supports full
parallelism of processing operations. This means that stored
data are processed and sent to the output device before RAM
becomes insufficient. Generally the following sequence takes
place inside the FPGA device:

• Read pixel data and save to the temporary register
block (to be used for potential processing purposes)

• Read next pixel data and save to the temporary register
block – previous data saved to the temporary register
block are stored to RAM at location 1

• Read next pixel data and save to the temporary register
block – previous data saved to the temporary register
block are stored to RAM at location 2 – data stored at
location 1 are sent to the output device

• Read next pixel data and save to the temporary register
block – previous data saved to the temporary register
block are stored to RAM at location 3 – data stored at
location 2 are sent to the output device

When all memory locations are full of data then the above
sequence starts again from the first location overwriting
previous records. Parallelism provides satisfactory
functionality even if we do not have external RAM memory at
our disposal.

IV. USB COMMUNICATION

It is often the case that processed image results are needed
to be available to a personal computer. They can be input to a
computer-based algorithm for further processing or just need to
be stored for further evaluation. By transmitting results to a
personal computer, debugging purposes can be served as well.

This capability is incorporated to our system providing
USB connectivity with a computer. The system uses the
UM232H FIFO-to-USB module. It takes over all low and high
level operations for a bidirectional communication with
computer's USB port. It uses a First In First Out buffer for
transmitted or received data and also has a specific
communication interface for write and read purposes. At this
point of our research we use the USB module in asynchronous
operation mode. This mode does not need a clock to exchange
data. The timing diagram for a typical write is shown in Fig. 8
and for a typical read is presented in Fig. 9.

The FPGA device must assert interface signals according to
write or read sequence in order to transmit or receive data.

Apart from the correct order, signal assertion is subject to
timing constraints. Timing constraints are defined from
manufacturer and for successful transactions must be adhered
precisely. Signal timing constraints related to read and write
procedures are quoted in Table I.

Figure 8. Asynchronous FIFO interface – WRITE signal
waveforms.

Figure 9. Asynchronous FIFO interface – READ signal
waveforms.

TABLE I. TIMING CONSTRAINTS OF UM232H WRITE AND READ
SEQUENCES

Time Description Min Max Units

T1 RD# inactive to RXF# 1 14 ns

T2 RXF# inactive after RD# cycle 49 ns

T3 RD# to DATA 1 14 ns

T4 RD# active pulse width 30 ns

T5 RD# active after RXF# 0 ns

t6 WR# active to TXE# inactive 1 14 ns

t7 TXE# active to TXE# after WR# cycle 49 ns

t8 DATA to WR# active setup time 5 ns

t9 DATA hold time after WR# inactive 5 ns

t10 WR# active pulse width 30 ns

t11 WR# active after TXE# 0 ns

In our application we concentrate on the write interface. A
suitable controller has been implemented in VHDL using state
machines. The clock used for this controller is 50MHz and is
derived from the external crystal oscillator. The state machines
are optimized for this execution speed. The write sequence is
depicted in Fig. 10.

At the beginning, the FPGA controller stays at “Idle” state.
In this state no data are sent. CMD constitutes an internal
control signal which is asserted to '1' when FPGA wants to
transmit data. When the CMD signal is asserted '1' from a
process, then the controller enters to “Send” state. It stays in
that state for as long as the TXE# signal is asserted '1', meaning
that UM232H is busy or the FIFO buffer is full. When TXE# is

noticed '0' the controller asserts the WR signal to '0', launches
data on the data bus and enters into state “Intermediate 1”.
Transition to state “Intermediate 2” occurs on the next clock
pulse and finally the procedure arrives to the “Complete state”.
It waits there until the CMD signal is asserted '0' by the internal
process that asserted it '1' and then it returns to “Idle” state. The
overall state machines sequence is designed to be fully
compatible with UM232H write sequence.

Idle

CMD=0

SendCMD=1

Intermediate 1

TXE=1

TXE=0

Complete

Intermediate 2

CMD=0
CMD=1

Figure 10. WRITE sequence State Machines.

From the host computer side, an appropriate software
application has been developed in Visual Basic. This
application receives image data and displays them on the
screen. It uses D2XX vendor's driver for USB communication.
The basic idea is that the host application checks if there are
incoming data every time a timer expires, which is
approximately every 10 ms. If there are available data, the
application reads them and reconstructs the image. When
image reconstruction is completed, the software shows it up in
a picture-box component. When a new frame is received the
previous loaded image in the picture-box is refreshed.
Depending on an external stimulus applied to our board, the
host application can display the output result from different
task-logic blocks. As discussed in the following paragraph, an
example is a number of different image filters that are
implemented simultaneously in the FPGA device. Different
stimuli are obtained by using three push-button switches.

V. IMPLEMENTATION OF IMAGE FILTERS

As we have discussed in previous sections parallelism not
only accelerates operations but provides flexibility in hardware
architecture. In our implementation parallelism of processing
algorithms is performed inside “ValidImageData” state.
Parallel operations can start when necessary data are pipelined
inside the FPGA device. The target function specifies the size
of pipelined data according to its requirements. In order to test
our system and evaluate the performance we have developed
certain simple tasks such as a Mean filter, a Gauss filter and an
Edge Detector. The aforementioned tasks are usually required
when we study advanced topics like stereo processing, feature
extraction or object recognition.

These three filters operate simultaneously in our VHDL
implementation. Depending on external stimulus our system
forwards the result of the selected filter to the output. Below,
the 3x3 kernel matrices applied on input image are quoted.
Kernel M is for mean filter, G is for Gauss filter and P1, P2 are
Prewitt masks for Edge Detector.

M =[1 1 1
1 1 1
1 1 1] ,G=[1 2 1

2 4 2
1 2 1]

P1=[
1 1 1
0 0 0

−1 −1 −1] ,P2=[
−1 0 1
−1 0 1
−1 0 1]

Parallelism requires the pixel intensities of the 3x3 image
area, where the convolution kernel is applied, to be
simultaneously available. As we have already mentioned,
sensor outputs color component information using Bayer
encoding. The total procedure requires two intermediate steps
in order to complete processing. The first step is to extract
pixel intensities from Bayer encoded data for every 3x3 image
window and the second step is to apply the filter mask. The
hardware structure is presented on Fig. 11.

Figure 11. Hardware structure in FPGA for parallelism.

Parallelism is achieved using RAM-based shift registers.
Sensor data are pipelined into shift registers. They are designed
in a specific way which outputs image data from 3x3
subwindows in a progressive scan. Assuming that shift
registers are full of data the pipelining procedure is described
by the following steps:

• Sensor outputs pixel data to shift registers in step 1 and
demosaics/extracts intensity from the central pixel that
belongs to image's subwindow 1

• Sensor outputs next pixel data to shift registers in step
1 and demosaics/extracts intensity from the central
pixel that belongs to image's subwindow 2 – intensity
pixel data are pipelined into shift registers in step 2 and
image filter applied on image's subwindow 1

• Sensor outputs next pixel data to shift registers in step
1 and demosaics/extracts intensity from the central
pixel that belongs to image's subwindow 3 – intensity
pixel data are pipelined into shift registers in step 2 and
image filter applied on image's subwindow 2 – filter
results on subwindow 1 are saved to RAM

• Sensor outputs next pixel data to shift registers in step
1 and demosaics/extracts intensity from the central
pixel that belongs to image's subwindow 4 – intensity
pixel data are pipelined into shift registers in step 2 and
image filter applied on image's subwindow 3 – filter
results on subwindow 2 are saved to RAM

The above procedure is being executed continuously until
image subwindows scan entire image.

The function Demosaicing in step 1 can be implemented
using several ways. In literature many algorithms have been
proposed [6]. One very simple algorithm is to use the mean
value of neighboring colors. Depending on the known color
component information of a pixel they are named as Gr, Gb, R
or B, as in Fig. 5. Table II presents how full color information
is calculated in every case. After the Demosaicing procedure
completes calculations for a pixel that belongs to row i and
column j, intensities are extracted using (1).

I (j , i)=(R e d+G r e en+B l ue) /3 (1)

TABLE II. DEMOSAICING PIXEL DATA

PIXEL Full Color Component calculation

Gr

R e d=(R(j−1, i)+R(j+1, i))/2

G r e e n=Gr

B l u e=(B(j ,i−1)+B(j , i+1))/2

Gb

R e d=(R(j , i−1)+R(j , i+1))/2

G r e e n=Gb

B l u e=(B(j−1, i)+B(j+1,i))/2

R

R e d=R

G1=Gr (j−1, i)+Gr (j+1, i)
G2=Gb(j , i−1)+Gb(j , i+1)
G r e e n=(G1+G 2)/4

B1=B(j−1, i−1)+B(j−1,i+1)
B2=B(j+1, i+1)+B(j+1, i−1)

B l u e=(B1+B2)/ 4

B

R1=R(j−1,i−1)+R(j−1, i+1)

R2=R(j+1, i−1)+R(j+1, i+1)
R e d=(R1+R2)/4

G1=Gb(j−1, i)+Gb(j+1, i)
G2=Gr (j , i−1)+Gr (j , i+1)

G r e e n=(G1+G 2)/4

B l u e=B

Intensity calculations and filtering are carried out
concurrently while FPGA is reading subsequent pixel data.
When FPGA reads data from row i it also completes
processing algorithms on previous rows. From now on we
follow the convention of naming a pixel that is at ith row and jth

column as pj,i. Let us consider the example of applying
aforementioned filters on a 3x3 image window to describe how

this mechanism works in detail. A random window of input
image is illustrated in Fig. 12. Let us focus on the window that
is highlighted with bold borders. This is a 4x4 window.
Assume that the bottom right pixel of that window belongs to
the random row i and column j of the input image.

In order to apply a filter mask at pj-2,i-2 we need to know
pixel intensities from a 3x3 window the bottom right pixel of
which is pj-1,i-1. This means that the processing elements must
have already calculated the intensity of pj-1,i-1 and have it
available for use. This premises that demosaicing of pj-1,i-1 has
been completed. In order to demosaic pj-1,i-1 and then extract the
intensity of that pixel we need to know the color component
from the 3x3 window of which the bottom right pixel is p j,i.
This implies that only when FGPA has readout pj,i it will be
able to perform filtering computations on pj-2,i-2. Hence FPGA
must have available pixel information that are being in the bold
4x4 window to be able to apply the processing algorithm on
pixel pj-2,i-2.

Figure 12. Image window necessary for 3x3 convolutions.

Mean filter implementation for pixel pj-2,i-2 includes first the
calculation of the following matrix.

M p j−2, i−2
=[

1⋅I j−3, i−3 1⋅I j−2, i−3 1⋅I j−1, i−3

1⋅I j−3, i−2 1⋅I j−2, i−2 1⋅I j−1, i−2

1⋅I j−3, i−1 1⋅I j−2, i−1 1⋅I j−1, i−1
]

Naming every element of matrix M as mx,y, where x=1,2,3
and y=1,2,3 the output image is produced as in (2).

I ' j−2, i−2=
1
9
⋅∑

x=1

3

∑
y=1

3

m y , x (2)

Gauss filter implementation for pixel pj-2,i-2 includes the
calculation of the following matrix.

G p j−2, i−2
=[

1⋅I j−3, i−3 2⋅I j−2, i−3 1⋅I j−1, i−3

2⋅I j−3, i−2 4⋅I j−2, i−2 2⋅I j−1,i−2

1⋅I j−3, i−1 2⋅I j−2, i−1 1⋅I j−1, i−1
]

Naming every element of matrix G as gx,y, where x=1,2,3
and y=1,2,3 the output image is produced as in (3).

I ' j−2, i−2=
1
16

⋅∑
x=1

3

∑
y=1

3

g y , x (3)

Edge Detector implementation is slightly different from
Mean and Gauss filters. First two Prewitt matrices P1 and P2

are calculated for the pixel pj-2,i-2.

P(1) p j−2,i−2
=[

−1⋅I j−3,i−3 0⋅I j−2,i−3 1⋅I j−1,i−3

−1⋅I j−3,i−2 0⋅I j−2,i−2 1⋅I j−1, i−2

−1⋅I j−3,i−1 0⋅I j−2,i−1 1⋅I j−1,i−1
]

P(2) p j−2, i−2
=[

1⋅I j−3, i−3 1⋅I j−2, i−3 1⋅I j−1, i−3

0⋅I j−3, i−2 0⋅I j−2, i−2 0⋅I j−1, i−2

−1⋅I j−3, i−1 −1⋅I j−2, i−1 −1⋅I j−1, i−1
]

Considering every element of matrix P1 and P2 as p(1)x,y and
p(2)x,y where x=1,2,3 and y=1,2,3 the output image is produced
as in (4).

I ' j−2, i−2={ 0 ,∣∑
x=1

3

∑
y=1

3

p(1) x , y∣+∣∑
x=1

3

∑
y=1

3

p(2)x , y∣<T

255 ,∣∑
x=1

3

∑
y=1

3

p(1) x , y∣+∣∑
x=1

3

∑
y=1

3

p (2)x , y∣>T }
(4)

The magnitude of image gradient is produced as the sum of
the absolute values of horizontal and vertical gradients instead
of the square root of the sum of the squares of matrix elements.
It is simpler, produces similar results and requires less
hardware resources. In order to receive a binary edge image a
thresholding procedure is applied. The gradient threshold is
defined as T=40.

VI. EXPERIMENTAL RESULTS

In this section we present image results that are produced
setting the overall system in action. All images have resolution
640x480. In Fig. 13 test results are presented from the Frame
Grabber. There are two images. The first image is in Bayer
encoding as produced by the sensor and displayed on the
computer screen without any further processing. The second
image is derived by demosaicing the first image. Let us note
that extraction of full color information has been placed on the
computer software in order to reduce transmit load from the
FPGA device to the computer. Fig. 14 shows results from the
Edge Detector. The first image is the output of the Frame
Grabber in gray scale. The second is the image produced
applying the Prewitt masks and the thresholding procedure.

Figure 13. Image results from the Frame Grabber.

Figure 14. Image results from the Edge Detector.

VII. SYSTEM EVALUATION

Evaluation of a system is a function of many aspects. The
proposed custom system for video processing was basically
motivated by the need of reduced overall cost in conjunction
with flexible architecture. Overall performance is also an
important issue. The final prototype board is demonstrated in
Fig. 15 and is actually a compromise between the above
objectives. The total cost of the system is about 60 euros,
including the microcontroller, FIFO-to-USB module, the
Cyclone IV FPGA device and the serial configuration device.
We consider this total cost to be very satisfactory.

Figure 15. The prototype FPGA board.

The proposed board is a minimal but powerful video
processor that can employ only the essential system resources,
while at the same time it can expand in a modular and flexible
manner in order to comply with additional requirements. Part
of the power and flexibility is found in the proposed
combination of a reconfigurable device with a well known,
powerful 32-bit processor. A harware/software data and control
interface is under development for the seamless connection
between the processor and the reconfigurable hardware.

Table III gives the necessary hardware resources for the
implementation of the task logic presented in the previous
sections. In order to implement simultaneously a mean filter, a
Gauss filter and a Prewitt edge detector we used less than 10%
of the available logic elements and almost half the available
on-chip memory. This is needed for a frame size 640x480
while for smaller images with half VGA resolution, the
necessary memory bits are almost 75000. The reported low
resource usage gives us the opportunity to add more features
and task logic to our system.

Let us note that the VHDL implementation for a VGA
controller is still in progress and therefore the required
resources are not taken into account in Table III. The main
limitation associated with VGA is relevant to the available I/O
pins. However, the flexibility of the proposed architecture
allows excluding other supplementary capabilities in order to
host additional features. A VGA port can be added by simply
removing USB connectivity, since the output information can
now be displayed on the VGA screen.

The implemented FPGA task logic is capable of processing
162 frames per second in full VGA resolution or 650 half VGA
frames per second (fps), with a crystal oscillator at 50MHz.
Practical processing frame rate is much more limited. The
image sensor can capture at most 53 fps in VGA resolution.

With its present USB configuration, the overall system in
action sends to the computer 4 full VGA frames per second, or
16 half VGA frames. In fact, the host application controlling
USB connectivity in asynchronous USB mode, slows down the
communication procedure. Using a more powerful computer or
developing more sophisticated software can lead to a better
overall performance. This frame rate can be considered
adequate for testing and debugging purposes or for evaluating
and analyzing image results.

TABLE III. RESOURCES NEEDED FOR FRAME RESOLUTION 640X480

Recources Available Used Percentage

Logic elements 22320 2000 9,00%

Pins (I/O) 80 42 52,50%

Memory bits 608256 290904 47,83%

VIII. CONCLUSIONS

A low-cost video-processing custom FPGA/microcontroller
board, based on a flexible modular architecture is presented.
The system features a Cyclone IV Altera device implementing
some video processing task and a PIC32 microcontroller able
to support peripheral functions. The video board features a
frame grabber suitable for CMOS image sensors using Bayer
encoding and a USB module, providing connectivity to a host
computer for further processing. The system is still in
experimental design phase and it is proved to be able to host
task logic for basic image processing using only a fraction of
the available resources. The cost of the proposed board is very
low compared to existing commercial video kits. The system is
expandable and is indented to host demanding machine vision
and real-time control applications.

REFERENCES

[1] U. Meyer_Baese, “Digital Signal Processing with Field Programmable
Gate Arrays,” Springer Berlin, Heidelberg, New York, 2007.

[2] W.J. MacLean, “An evaluation of the suitability of FPGAs for
embedded vision systems,” in: Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 3, San Diego, California, USA, June 2005, p. 131.

[3] T. Cervero, S. Lopez, G.M. Callico, F. Tobajas, V. de Armas, J. Lopez,
R. Sarmiento, “Survey of reconfigurable architectures for multimedia
applications,” VLSI Circuits and Systems IV, edited by T. Riesgo, E. de
la Torre, L. S. Indrusiak, Proc. of SPIE Vol. 7363, 736303, 2009, pp. 1-
11.

[4] J.A. Kalomiros, J. Lygouras, “Design and evaluation of a
hardware/software FPGA-based system for fast image processing,”
Microprocessors and Microsystems, Volume 32, Issue 2, March 2008,
Pages 95-106.

[5] Hou, H., Zhang, W., Huang, D., Zhang, T., “Design and realization of
real-time image acquisition and display system based on FPGA”, 2011
International Conference on Mechanical Engineering and Technology,
ICMET 2011, London, November 24-25.

[6] Daniele Menon, Giancarlo Calvagn, “Color image demosaicking: An
overview,” Signal Processing: Image Communication, Volume 26, Issue
8-9, October 2011, Pages 518-533.

[7] I.S. Uzun, A. Amira, A. Bouridane, “FPGA implementations of fast
fourier transforms for real time signal and image processing,” IEE
Proceedings—Vision, Image and Signal Processing 152 (3) (2005) 283–
296.

	I. Introduction
	II. Hardware Architecture
	III. The Image Grabber
	IV. USB Communication
	V. Implementation of Image Filters
	VI. Experimental Results
	VII. System Evaluation
	VIII. Conclusions

