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Abstract—In this paper a new stereo vision method is presented
that combines the use of a lightness-invariant pixel dissimilar-
ity measure within a dynamic programming depth estimation
framework. This method uses concepts such as the proper
projection of the HSL colorspace for lightness tolerance, as
well as the Gestalt-based adaptive support weight aggregation
and a dynamic programming optimization scheme. The robust
behavior of this method is suitable for the working environments
of outdoor robots, where non ideal lighting conditions often
occur. Such problematic conditions heavily affect the efficiency
of robot vision algorithms in exploration, military and security
applications. The proposed algorithm is presented and applied
to standard image sets.

Index Terms—stereo vision, robot vision, dynamic program-
ming, lightness-invariant.

I. INTRODUCTION

Autonomous robots need to know about the structure of
their 3D environment as it plays a decisive role in their
behavior and planning. Vision is an intuitive way to gather
information about the world. Furthermore, stereo vision is able
to extract the depth of a scene out of two images. However,
stereo correspondence is considered as a demanding and
computationally intensive procedure. The recent advances in
stereo vision algorithms [1] have made such systems suitable
for robots. On the other hand, robotics poses new problems
to the stereo vision algorithms. Situations of non-uniform
illumination often occur in real working environments, as
shown in Fig. 1. As a result, apart from high refresh rates and
precise results for ideal image pairs, stereo algorithms should
be also able to cope with difficult illumination conditions [2].

There are two large families of stereo algorithms, i.e. local
and global ones [1], [3]. Local stereo algorithms can provide
high frame rates but their accuracy is low. On the other
hand, global algorithms suffer from low frame rates but their
results are generally very accurate. Dynamic Programming
(DP) stands somewhere between those two broad classes
providing good accuracy of results in acceptable frame rates.
Moreover, recent advances in DP-based stereo algorithms
seem to be able to significantly improve both of these two
aspects. Hardware implementations of DP have been reported
[4], [5] that provide high execution speed. Additionally, the

Fig. 1. Left and right images of pairs suffering from non-uniform illumination

incorporation of adaptive support weight aggregation (ASW)
schemes has been shown to further improve the accuracy and
detail of the produced depth maps [6].

II. ALGORITHM DESCRIPTION

This work presents a new stereo algorithm that uses a
lightness-invariant pixel dissimilarity measure, a ASW-based
aggregation scheme, and a DP-based optimization step. The
overall structure of the presented algorithm is shown in Fig.
2.

Fig. 2. Block diagram of the presented stereo correspondence algorithm



A. Lightness Compensating Dissimilarity Measure

The used dissimilarity measure is defined and calculated
within the HSL colorspace. This colorspace is represented as
a double cone. The H channel is for hue and expresses the
human impression about which color is actually depicted. Each
color is represented by an angular value ranging between 0
and 360 degrees (0 being red, 120 green and 240 blue). The S
channel is for saturation and determines how vivid or gray the
particular color is shown. Its value ranges from 0 for gray to 1
for fully saturated (pure) colors. Finally, the L channel of the
HSL colorspace is for the Luminosity and it determines the
intensity of a specific color. It ranges from 0 for completely
dark colors (black) to 1 for fully illuminated colors (white).

As a result, the HSL colorspace separates lightness from
the other pure chromatic characteristics. This fact implies that
a given color will theoretically result in the same values of
hue and saturation regardless the environment’s illumination
conditions. Ignoring the Luminosity channel will inevitably
lead to the loss of some amount of information and, as a
result, to slightly inferior results for ideal lighting, but will
provide robustness against real, non-ideal and non-uniform
lighting conditions [7]. The omission of the vertical (L) axis
from the colorspace representation leads to a 2D circular disk,
defined only by H and S.

In this reduced colorspace, each color Pi can be represented
as a planar vector with its initial point being the disc’s
center. As a consequence, it can be described as a polar
vector or equivalently as a complex number with modulus
equal to Si and argument equal to Hi. That is, a color in
the new luminosity-ignoring colorspace representation can be
described as:

Pi = Sie
iHi (1)

Based on this color description a luminosity-compensated
dissimilarity measure (LCDM) has been proposed in [7].
According to this, the variance of two colors P1 and P2 can
be found in the reduced HS colorspace as the difference of
the two complex numbers:

LCDMP1,P2 = |P1 − P2|
=
∣∣S1e

iH1 − S2e
iH2
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=
√
S1

2 + S2
2 − 2S1S2 cos(H1 −H2)

(2)

Equation 2 is the mathematical formulation of the LCDM
dissimilarity measure, which takes into consideration any pure
chromatic information, but not the luminosity. In contrast
to other popular dissimilarity measures, such as absolute
differences (AD) or squared differences (SD), LCDM can pro-
vide robust behavior against viewpoint-dependent chromatic
differentiations. Consequently, LCDM was chosen to be used
in this algorithm.

B. Gestalt-based Aggregation

Aggregation is used as a mean to suppress the existence of
noise during the subsequent disparity value selection. Com-
monly, the dissimilarity values of all the pixels B(x′, y′) lying

inside a w × w support region around a central pixel A(x, y)
for a given disparity value d are aggregated as the updated
value of pixel A for the considered disparity value. While fix
and adaptive sized support windows have been commonly used
for constant-weight pixel aggregation, ASW [8] has proposed
the use of fix sized windows and adaptively weighted pixel
values. The weight assignment can be performed according
to the Gestalt laws of perceptual organization. The proposed
algorithm follows a mathematical formulation similar to the
one found in [7] for the Gestalt laws of proximity and
similarity. According to that, the two Gestalt laws can be
expressed as:
• Proximity (or equivalently distance): The closer two

pixels are the more correlated to each other they are.

proximityA,B = 1−
√

(x− x′)2 + (y − y′)2

w
√

2
(3)

• Color similarity (or equivalently color dissimilarity): The
more similar the colors of two pixels are the more
correlated they are.
The color similarity of the two pixels can be estimated
using the LCDM of their colors. Thus, the similarity
between the pixels A and B is calculated as:

similarityA,B = 1−
LCDM(x,y),(x′,y′)

2
(4)

Finally, an ASW aggregation scheme requires a function
that combines the quantified Gestalt laws in order to provide
a single weighting factor. The two Gestalt-based correlation
factors are combined into one by multiplication providing a
general correlation weight between the pixels A and B:

wA,B = proximityA,B · similarityA,B (5)

This combined weight of Eq. 5 is calculated for the support
regions of the examined pixels both in the left and the right
input images, obtaining wA,Bleft

and wA,Bright
, respectively.

Consequently, the aggregation of the LCDM, taking into
consideration the weighting factor for each pixel is:

ASWA =
∑
wA,Bleft

· wA,Bright
· LCDMA,B∑

wA,Bleft
· wA,Bright

(6)

where the pixel B belongs to the w×w neighborhood of the
central pixel A.

C. Dynamic Programming (DP) Optimization

Dynamic programming has been used widely as a semi-
global optimization method for the estimation of disparity d
along image scanlines [9], [10]. The general idea behind a
DP stereo algorithm is to treat the correspondence problem
as an energy minimization problem. The energy function E
represents the total cost of a sequence M of matching pixels
in a scanline and consists of a data and smoothness term,
according to the equation:



E(M) = Edata(M) + Esmooth(M) (7)

The data term, in the above equation is a dissimilarity
measure between pixels in the left and right image of the
stereo pair. Intensity differences have been used widely in the
literature, while in this paper we introduce the luminosity-
compensated dissimilarity measure (LCDM) presented in Eq.
2 and aggregated using the adaptive weight support scheme,
as in Eq. 6. The smoothness term can be formulated to handle
depth discontinuities and occlusions. The total cost function
of a matching sequence, used in this paper, originates from
Birchfield and Tomasi’s empirical formulation [11], which is
found to facilitate the precise localization of depth disconti-
nuities:

E(M) =
Nm∑
i=1

ASW (xi, yi) +Nocckocc −Nmkr (8)

where kocc is a constant occlusion penalty, kr is a con-
stant match reward, ASW is the aggregated luminocity-
compensated dissimilarity measure between two pixels xi, yi

in the left and right scanline, and Nocc, Nm are the number
of occlusions and matches, respectively, in sequence M [11].

In our approach of DP a 2D cost plane is built for all
possible disparities, for each pair of horizontal image lines.
Fig. 3 shows the cost plane for a maximum disparity range of
five pixels. A cost is attributed to every cell in the grid and the
algorithm searches for the path of minimum total cost. Gray
cells do not belong to the search grid because they are beyond
the limits of maximum disparity. Marked cells represent the
matching sequence in the presented example. Columns or rows
without marked pixels correspond to an occluded pixel.

A different representation of the cost plane can result by
shifting up each column of Fig. 3 by an amount equal to the
column index, as shown in Fig. 4. In the grid of Fig. 4 the
vertical axis represents the disparity d = x − y. Taking into
account the ordering and uniqueness constraints and assuming
that occlusions cannot occur simultaneously in the left and
right scanlines, Birchfield and Tomasi suggest that for any
cell in the grid of Fig. 4 the possible preceding matches are
the cells shown in Fig. 5. For each cell in the grid of Fig. 4
we record the cost φ(d, y), which represents the cost of the
best match sequence up to the present point. The φ array is
traversed from left to right and from top to bottom and the
cost of the best path to each cell is computed as in [11]:

φ[d, y] = ASW (y + d, y)− kr+

min


φ[d, y − 1],
φ[d− 1, y − 1] + kocc, ...,
φ[0, y − 1] + kocc,
φ[d+ 1, y − 2] + kocc, ...,
φ[dmax, y + d− dmax − 1] + kocc

 (9)

In Eq. 9 the minimum is taken among all possible preceding

	  
Fig. 3. Cost plane shown as a search grid for a left and right scanline, with a
maximum disparity range of five pixels. Marked cells form a match sequence
and unmarked columns or rows correspond to occlusions

!
Fig. 4. Shifted cost plane, where the vertical axis corresponds to disparity
d = x− y. Marked cells represent the same match sequence, as in Fig. 3

matches, shown as cells in Fig. 5. The first cost corresponds
to a match without change in disparity, while all other costs
precede left and right occlusions. The value dmax represents
the upper limit of disparity.

A second matrix π is also filled for each grid cell, where
each cell π[d, y] contains the coordinates [dp, yp] of the
immediately preceding match in the match sequence.

After building the cost-plane, the optimal path is found by
backtracking. Starting from the lowest cost cell corresponding
to a limiting pixel in the right scanline we trace the optimal
path by following backwards the cells of the array π. All the
unmatched pixels in an occlusion are assigned the disparity of
the nearest match.

Let us note that the above formulation leads to a multi-
state dynamic programming approach, as opposed to the usual
three-state approach. In the later, for each cell in the search
grid there are only three candidate matches preceding the
current cell [9].



!Fig. 5. For each cell in the grid of Fig. 4, displayed here as a gray square,
there is a set of immediately preceding possible matches, shown here as white
grid cells

By applying the proposed luminocity-compensated match-
ing cost in the cost-computation stage described by Eq. 9,
we explore the use of an intensity-invariant measure in a
dynamic programming framework. Additionally, the proposed
adaptive weighted cost aggregation step selectively acquires
interscanline support from adjacent scanlines. As a result, it
is expected to improve the overall dense disparity map by
reducing the horizontal streaking artifacts usually present in
disparity maps produced by dynamic programming techniques.
Experimental results obtained from public stereo datasets are
presented in the next section.

III. EXPERIMENTAL RESULTS

The proposed algorithm was tested on a series of stereo
image pairs in order to assess its performance. The datasets
used for the test were the popular and widely used by the stereo
vision community Tsukuba and Cones image pairs. These sets
of images are known for the combination of regions with
different characteristics and are challenging for stereo vision
algorithms.

The parameters of the proposed algorithm were given con-
stant values throughout the experimental validation tests. An
aggregation window of 9× 9 pixels was used. The occlusion
penalization parameter has been set to kocc = 5 and the
constant match reward parameter was kr = 25. The results of
the proposed algorithm when applied to the ideally lightened
Tsukuba and Cones image pairs are given in Fig. 6.

The proposed algorithm has been also applied to a series of
stereo pairs suffering from differences of the lightness between
the two input images. The differently lightened image pairs
were derived based on the original Tsukuba stereo pair and
by altering the values of each one of the RGB channels by
a fixed percent each time. As a result, a series of Tsukuba
pairs have been obtained, shown in Fig. 7(a) and 7(b), with
a fixed lightness differentiation between the two images of
each pair. The proposed algorithm was tested on these image
pairs and the resulting disparity maps are given in Fig. 7(c).

	   	   	  

(a) Left image (b) Right image
	  

(c) Disparity map

Fig. 6. Final disparity maps produced by the proposed algorithm for
the Tsukuba (first row) and the Cones (second row) datasets under perfect
illumination conditions

	   	   	  

	   	   	  

	   	   	  

	   	   	  

	  

(a) Left image
	  

(b) Right image
	  

(c) Disparity map

Fig. 7. Final disparity maps produced by the proposed algorithm for the
Tsukuba dataset under 0% (first row), 20% (second row), 30% (third row) ,
40% (fourth row) and 50% (fifth row) illumination differentiation

Table I shows the normalized mean square error (NMSE) of
the calculated disparity map for each of the pairs of Fig. 7
with respect to the ground-truth disparity maps [3], [12].

Using least squares fitting, it is obtained that the trendline’s
slope for the values given in Table I is −2 ·10−5. This proves
that the output of the algorithm is largely independent of the
illumination difference between the two input images. As a



TABLE I
NMSE FOR VARIOUS ILLUMINATION DIFFERENCES OF THE INPUT

IMAGES

Illumination Difference NMSE
0% 0.0660

20% 0.0665

30% 0.0679

40% 0.0652

50% 0.0649

result, the algorithm presents a robust behavior having low
NMSE constantly over a wide range of lightness differentia-
tions between the two input images.

IV. CONCLUSIONS

This work has presented a new robust stereo vision al-
gorithm suitable for use in a robot’s real working environ-
ment. The use of the lightness-invariable dissimilarity mea-
sure LCDM, a sophisticated Gestalt-based ASW aggregation
procedure, and a DP-based optimization step is proposed. The
algorithm can tolerate non-ideally illuminated input images
and produce quality and reliable results. In order to evaluate
the proposed algorithm the public Middlebury dataset [12]
were used. The results are very encouraging and show that
good disparity maps can be obtained even under strongly
biased lightness differences between the images of the stereo
pair. In addition, the proposed adaptive cost aggregation
scheme strongly eliminates horizontal streaks that are due to
inconsistencies between successive scanlines.

In future work the proposed DP framework will be studied
with respect to its hardware implementation as a System-on-a-
chip, with the purpose of high quality depth maps in very high
frame-rates. First results show that the system can successfully
be implemented using medium hardware resources in a field
programmable gate array (FPGA) chip.
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