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Abstarct: We present the design of a hardware co-processor for stereo depth detection, based on a parallel 

implementation of the Sum of Absolute Differences algorithm. We follow model-based design and create a 

parametrizable open source VHDL library component appropriate for integration within a System-On-a-

Programmable Chip (SOPC). We target a Field Programmable Gate Array (FPGA) board featuring external 

memory and other peripheral components and implement the control path with a Nios II embedded processor 

clocked at 100MHz. The hardware co-processor produces dense 8-bit disparity maps of 320x240 pixels at a 

rate of 25 Mpixels/sec and can expand the disparity range from 32 to 64 pixels with appropriate memory 

techniques. Essential resources can be as low as 16000 Logic Elements, while by migrating to more complex 

devices the design can easily grow to support better results. 
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1. INTRODUCTION 

Stereo vision is the process of estimating the depth of scene points from their change in position between 

two or more images. It has potential uses in object recognition, robotics, navigation systems, virtual reality 

etc. [1]. The heart of stereo vision systems is solving the correspondence problem i.e. finding for each point 

in one image the matching point in the other image. The resulting displacement of a projected point in one 

image with respect to the other is called disparity, while the set of all disparities is termed a disparity map 

[2]. Once correspondence between images is established, a 3-D point in the real scene can be found by 

triangulation. 

Stereo matching is one of the most active research areas in computer vision. Many algorithms have been 

developed and address various difficulties, like occlusion, lack of texture or noise [3,4]. Most stereo 

correspondence techniques exploit a binocular geometry constraint referred to as epipolar constraint, which 

reduces the correspondence problem to a search along respective epipolar lines. By using rectified stereo 

pairs epipolar lines coincide with image scan-lines [2,3]. 

Methods to find correspondence are always computationally intensive and when executed by general 

purpose computers have a limited potential for real-time calculations of dense disparity maps. A few real-

time stereo systems based on desktop PCs have appeared recently [5,6], however most real-time 

implementations make use of special-purpose hardware, like Digital Signal Processors (DSPs), Application 

Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs). Custom hardware usually 
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exploits hardware-friendly algorithms like the Sum of Absolute Differences (SAD) or phase correlation 

techniques [7,8]. Most real-time systems are inflexible, difficult to design and expensive machines, with 

virtually no potential to parametrize, re-use or share their resources. In recent years FPGA systems are 

considered to bridge the flexibility gap between pure software and hardware. They present an advantage over 

ASICs, in that they are re-programmable, less expensive for prototyping and have a relatively short design 

cycle. They also perform many times better than pure DSPs since they exploit the inherent parallelism in 

many vision algorithms [9]. Sometimes designers combine FPGAs with DSPs for superior performance [10]. 

In this work, we present in detail the design of a FPGA hardware co-processor that produces dense 

disparity maps from rectified stereo pairs. It is designed as a VHDL library component and can be readily 

imported in Altera’s SOPC-Builder tool as a part of a System-on-a-Programmable-Chip. We follow model-

based design and can easily parametrize the function from within the model design before we translate it to 

VHDL. Pixel streaming is controlled by a Nios II embedded soft processor while the system also includes 

external memory and a communication channel with other systems. We target a Cyclone II 2C35F672C6 

FPGA chip on a DSP development board. The function can be shared with anyone using the same design 

platform and can target any compatible chip with adequate resources. It can be used with a variety of I/O 

equipment by using appropriate controllers. Although our implementation is FPGA-specific, the design can 

also be implemented in ASIC with comparable performance. Designing for ASICs would also address the 

problem of fixed resources inherent in FPGAs and would be cost-effective in case of high-volume 

production. 

2. SUMMARY OF THE ALGORITHM 

In this implementation we use the Sum of Absolute Differences (SAD), which is a classic algorithm for 

finding stereo correspondence and a variation of the well known Sum of Squared Differences (SSD). 

Assuming rectified images the best match for a point in one image is found by comparing a square window 

centered at this point against windows of equal size centered at points on the corresponding scan-line in the 

other image. The main idea of block matching across epipolar scan-lines is shown in Fig. 1. 

The metric used for similarity is the sum of absolute intensity differences across the window:    
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where (x,y) is the central pixel in the first image, (x+d,y) is a point on the corresponding scan-line in the 

other image displaced by d with respect to its conjugate pair and u,v are indices inside the window. The point 

that minimizes the above measure is selected as the best match. To simplify the matching process the search 

across a scan-line can be limited within a range of expected disparities instead of shifting the window across 

the whole scan-line. A good discussion of fast implementations of SAD can be found in references [11,12]. 

SAD algorithm has its drawbacks, namely it may fail to produce correct disparities at occlusion 

boundaries and can be inconsistent in the case of non-uniform lighting. Implementing left-right consistency 

checks or using normalized versions of the algorithm can minimize outlier points due to these effects. 

Median filters are also commonly used to eliminate outliers caused by occlusion regions and image noise 

[3,11].  
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From a hardware point of view the SAD function requires only adders and comparators for which 

modern FPGAs provide good support. Moreover, correlation algorithms like SAD are characterized by 

regular structures, abundant parallelism and linear data flow. These features make SAD hardware friendly 

and a good candidate for reconfigurable hardware. 

 

3. HARDWARE DESIGN 

We modeled and simulated the hardware co-processor using DSP-Builder, a tool that combines the 

Mathworks’ MATLAB and Simulink design tools with VHDL design flow. DSP-Builder contains bit- and 

cycle-accurate Simulink blocks which cover basic digital operations as well as complex functions [13].  

The basic design follows two stages. The first stage in Fig. 2 is a scan-line buffer and aims to produce a 

3x3 comparison window across both image paths. For this purpose, image lines are shifted into the line-

buffer and pixels are stored in delay-lines, as shown in Fig. 2.  

Two successive z-1 delay blocks produce the two neighboring pixels for each pixel on both scan-lines, 

while a z-320 delay block produces the neighboring pixel in the previous scan-line. This assumes a scan-line 

of 320 pixels and is a parameter that can change in order to support different image resolutions. Line buffers 

are implemented as embedded RAM blocks in the FPGA chip.    

The next stage, shown as a block in Fig. 3, is a parallel structure that hosts 32 streaming pixels of each of 

the three input lines of image2 and their neighbors in a 3x3 window. These pixels are compared in parallel 

with an equal window in image1. In this stage the sum of absolute differences is produced across the 32-

pixel parallel structure in one execution cycle. In Fig. 4 four such comparisons are suggested, grouped in a 4-

pixel stage, where only one of the three steaming lines per image is shown.  The calculations at the first pixel 

are shown in gate-level detail, while the next 3-pixels calculations are shown in squares. The stage of Fig. 4 

is then repeated by cascading eight times to produce 32 values of SAD, as shown in Fig. 5.   

The stage of Fig. 3 makes heavy use of chip resources absorbing approximately 6000 Logic Elements for 

every 16 additional pixels in the range of disparity. It exploits both pixel-level and window-level parallelism: 

it produces Absolute Differences of all the pixels of reference and comparison windows in parallel, while it 

makes parallel comparisons of the reference window with all candidate windows.  

The sum of absolute differences, produced at the stages of Fig. 4 for every pixel in the disparity range, is 

input to a next stage, shown as the far right block in Fig. 5, where the minimum absolute difference is 

calculated. For this purpose, we build a square matrix where every input SAD value is compared with every 

other input value and sets the output of an AND gate if it is found to be the minimum value. This principle is 

manifested in Fig. 6, for a total of four pixels. Additional hardware, not shown in Fig. 6, produces a tag-value 

(0-3) attributed to the winning pixel with the minimum SAD. The minimum input SAD value, out of all four, 

is also output from this stage. 

This matrix can be expanded by repeating this basic structure and connecting rows and columns to find 

in parallel the minimum of any number N of input values. The result would be a matrix with NxN 

comparators. However, in order to avoid the rapid increase in the volume of logic elements required for a 

massive parallel matrix, we repeat the simple stage of Fig. 6, in order to derive within one clock cycle the 

minimum SAD at every four pixels. This scheme is implemented with eight stages, for a total of 32 SAD 
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values. The minimum results of equal number of comparisons are produced, along with the corresponding 

pixel tag-value. Then, two additional layers with appropriate pipelining are used in order to produce the final 

minimum output. A final tag value attributed to the winning pixel out of the total of 32 in the disparity range 

is also derived, and equals the actual disparity value. 

In our implementation the two images are inserted in the co-processor as a multiplexed serial pixel 

stream (8-bit grayscale) from a 16-bit data bus. A total of four main clock cycles are needed in order to 

obtain one pixel per image and therefore every pixel needs two clock cycles in order to move one step into 

the processing structure. This results to four main clock cycles for each disparity pixel in the output stage. 

The input stage is shown in Fig. 7, but it can be customized to meet the requirements of different input 

schemes. Streaming lines of both images are synchronized by means of proper delays, as shown in Fig. 7. 

Data transfer and control are described in section 5. 

In the above design, frame resolution only affects the depth of the delay lines in the stage of Fig. 2. In 

order to implement delay lines for a resolution of 320x240 pixels we need approximately 20000 bits of 

embedded memory out of a total of 480000 available in a 2C35 Cyclone II chip. As a result frame resolution 

in the above design is not really an issue since pixels are streaming rather than stored. However, the 

magnitude of the range of disparities supported by the system as well as the magnitude of the comparison 

window depends on the available resources. In the following section we describe an architecture which is 

able to double the disparity range from 32 pixels to 64, while keeping the necessary resources low. 

 

4. EXPANDING THE DISPARITY RANGE 

Doubling the cascading blocks in Fig. 5 is a direct way to double the disparity range, however this 

technique is very demanding with respect to chip resources. In this paragraph we describe a more efficient 

architecture that can double the disparity range, keeping the necessary resources low. In principle, this new 

design keeps the main structure as in Fig. 3, hosting the same total range of 32 pixels. In this way, the 

necessary resources remain approximately the same. However, every streaming pixel of image1 is now 

compared twice with the streaming pixels of image2, hosted in the main SAD structure. Between the two 

comparisons there is a phase difference of 32 pixels. After the first comparison, the pixel of image1 as well 

as its disparity in the range from 0 to 31, enter a delay line of 32 pixels and pop-up again when the main 

structure is filled with the next 32 pixels of the streaming image2. Then a new comparison occurs, while the 

disparity tag values alternate to represent a range from 32 to 63. The two disparity values are compared with 

respect to their corresponding SAD values and the minimum SAD wins. Fig. 8 manifests the above principle, 

for a total range of disparities up to 64 pixels.   

Since in the above technique we need two comparisons per pixel, the number of cycles needed to 

complete all comparisons is doubled. In this sense there is a cost in this procedure, however it can help us to 

implement large ranges in medium devices. An important aspect of this design is that it can output both 

disparities, processed with low and large range values, so that one may select the disparity range dynamically 

and process remote scene points with low range and close points with large range.   

 

5. OVERALL SYSTEM DESIGN AND ARCHITECTURE 
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The co-processor is embedded in a medium-scale FPGA as part of a System-On-a-Programmable-Chip 

(SOPC). The system consists of peripheral controllers that interface the reconfigurable chip with external 

memory and communication devices, the stereo co-processor task-logic, Direct Memory Access (DMA) 

controllers and a control path implemented with a Nios II software processor [14]. Our target device is a 

medium-scale Cyclone II 2C35 FPGA chip, placed on a development board featuring external Double Data 

Rate (DDR2) Synchronous Dynamic Random Access Memory (SDRAM) and Static RAM (SRAM) memory 

as well as communication channels that can be used to transfer data from a computer or other device. In our 

test set-up we transfer image data from a desktop computer’s file-system to the external DDR2 memory by 

means of Nios’ power to manage and stream data. The overall system architecture is shown in Fig. 9. 

The model-based design presented in the previous paragraphs is translated into VHDL code by means of 

the DSP-Builder conversion engine. In order to interface our task logic with the Nios data and control path 

we also built hardware fabric implementing the AvalonTM protocol [15]. The design is appropriately 

packaged into a library component which is readily recognized by the Quartus synthesis software and can be 

easily integrated within a Nios II system. Our component can be shared as open-source Intellectual Property 

(IP) and can be parametrized or customized according to specific needs.   

Nios processor is programmed with instruction code in order to implement DMA transactions between 

the system peripheral memory and the Nios data path. It can also be programmed to access a host computer’s 

file-system or communication channels. For this purpose we use the Nios II Integrated Development 

Environment which is used to develop instruction code for the Nios processor. The output disparity array can 

be transferred to the host computer as a grayscale image file or it can be projected on a monitor screen by 

means of an on board VGA controller.    

 

6. RESULTS AND COMPARISON WITH OTHER SYSTEMS 

6.1 Output disparity maps 

In this section we present hardware output results in the form of dense disparity maps. We use the well 

known Tsukuba University series of images, one of which is shown in Fig. 10 along with ground truth. 

Images are translated into 1D arrays and transmitted to the FPGA board over the host/FPGA communication 

channel. Pixel data are multiplexed one by one so that we maintain the synchronization between the two 

images. This pre-processing stage is assigned to the embedded Nios II processor. Pixel demultiplexing is 

performed by the input stage of the stereo co-processor, as shown in Fig. 7. The resulting disparity map is 

sent back to the computer and is saved as a Bitmap (BMP) image file for evaluation. 

We parameterize our module to process images with varying resolutions, with a disparity range 16 or 32 

pixels and with a SAD window 3x3 and 5x5. Results are shown in Figs. 11, 12 and 13. Fig. 11  shows a 

160x120 pixel disparity map produced with input images of the same resolution. Fig. 12 and  13 exhibit 

images with resolution 320x240 (8-bit grayscale) processed with windows 3x3 and 5x5 pixels respectively.    

All results are characterized by relatively high noise appearing as black and white spots, especially at 

surfaces with low texture. This result is common with SAD or SSD algorithms, especially with small 

comparison windows. The wider the window the lower the noise, but at the same time object borders become 

blurred. A post-processing filter is often adopted in order to correct noise effects [11, 16]. In our experiments 
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we processed output disparity maps with a median 3x3 filter. In Figs. 12 and 13 the result of post-processing 

filtering is shown alongside the co-processor output. Although a 5x5 window reduces noise as compared to a 

3x3 SAD window, the median filter produces comparable results on both disparity maps. This result is also 

emphasized by the quality assessment in the following paragraph. 

 

6.2 Performance characteristics 

The results presented above are comparable with those produced by a software algorithm working on an 

equal comparison window and disparity range, but the processing in hardware is more than 2000 times 

faster. Our comparison is with a Pentium IV at 3GHz running a G language LabVIEW application for SAD, 

with optimized array processing functions. 

Table 1 reports the comparison between software and hardware implementation of our full-SAD 

algorithm. In order to evaluate the performance in each case we used 1) the RMS (root mean squared) error 

between the computed disparity maps and the ground truth map and 2) percentage of bad matching pixels, 

for which the computed disparity differs more than one disparity pixel than the ground truth disparity. 

Quality metrics are given by eqs. (8) and (9) in [4]. For this performance evaluation the ground-truth image 

shown in Fig. 10 (b) was used. Only image borders were excluded from the calculation. Both 

implementations are evaluated using 3x3 and 5x5 comparison windows. The effect of filtering outliers with a 

post-processing median filter is also measured.  

 

RMS error in disparity units Bad matches Window size/ 

Filter Software Hardware Software Hardware 

3x3/no 0,055 0,052 38% 37% 

5x5/no 0,050 0,05 28% 27% 

3x3/median 0,042 0,049 28% 26% 

 

Table 1: Comparison between software and hardware implementation of our full-SAD algorithm 

 

 

Table 2 reports the hardware requirements for the implementation of the stereo co-processor in a Cyclone 

II 2C35F672 chip. This FPGA has a resource capacity of 33000 Logic Elements and can provide 480000 bits 

of on-chip RAM memory. Approximately 7000 LE of the reported necessary total recourses are attributed to 

Nios processor and to embedded peripheral controllers. We note that when we double the disparity range by 

using the principles of section 4, the required resources do not change substantially (see third line of Table 

2). We observe that implementing a 5x5 comparison window in a hardware structure hosting a 32-pixels 

disparity range requires almost 88% of the total resources and represents the limit of this particular chip. 

However, the same quality can be achieved by a 3x3 SAD window followed by a median filter, as shown in 

the evaluation of Table 1. 
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Image 
resolution SAD window Disparity range 

(pixels) 

Logic 
Elements 

(LE) 

Overhead 
needed for Nios 

+peripherals 
(LE) 

Total 
Memory bits 

80x60 3x3 16 3300 7000 176000 
160x120 3x3 16 8000 7000 186000 
160x120 3x3 16x2 (double 

comparison) 
9600 7000 202700 

320x240 3x3 32 15000 7000 196000 
320x240 5x5 32 22000 7000 216832 

 

Table 2: Logic Elements and Memory bits for different parameters of the co-processor 

 

Migrating to more complex devices, like Stratix II, can give us an overhead to build a much more 

massive stereo co-processor, based on the same premises as above.  

As already mentioned, one pixel disparity calculation needs four main clock cycles in our design. With a 

main on-board clock of 100MHz we process a frame with resolution 320x240 pixels in 3.1 ms. This is the 

equivalent of 325 frames per second. Equivalently, the system processes 25 Mpixels per second.  

By applying the PDS metric (Points times Disparity per second) we measure a PDS value of 

25x106x32=800x106 disparities per second, which is above most reported hardware systems [17].  In a fully 

parallel system this metric is factored by the main clock frequency and the maximum sustained disparity 

range. The high disparity throughput can be of particular importance for a number of future applications, like 

fast part inspection in industrial automation, obstacle detection for autonomous navigation, deformation and 

vibration measurements, mapping of the environment from moving vehicles etc [18]. Fast 3D analysis is now 

possible using high-speed digital cameras able to transmit hundreds or thousands of frames per second [19]. 

However, true processing rate is also defined by other latencies, like Direct Memory Access (DMAs) and 

other data transfer procedures and depends on how the co-processor is interfaced with peripheral circuitry. It 

is also submitted to the limits of conventional NTSC or PAL video cameras and frame-grabbers. We measure 

that a practical stereo system as in Fig. 9, can render about 12-14 disparity frames per second on a video 

monitor, when it receives a double-frame video sequence from a host computer through high-speed USB2.0 

channel. Details on how a Nios II system can interface with a USB2.0 controller can be found in [20].  

 

6.3  Comparison with other FPGA implementations 

In this paragraph we present the main idea behind other FPGA-based stereo implementations and 

compare them with our system.  

Hariyama et al. [21] present a coarse to fine iterative SAD approach, using adaptive window size in order 

to reduce ambiguity at smaller detail. They exploit a more sophisticated algorithm than simple SAD, which 

however requires complex data scheduling and is demanding with respect to hardware resources. They result 

in a complicated and massive architecture that can only be accommodated with a bit-serial pipeline that 

reduces parallelism. They make heavy use of on-chip memory modules to load reference and search image 

regions and they can extend to practical full images only with a multichip design. Their FPGA 
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implementation utilizes 42570 Logic Elements of an Altera APEX20KE chip in order to process a 64x64 

image.  

Lee et al. [22] implement versions of SAD algorithms in VHDL and synthesize them to determine 

resource requirements and performance. Their main design principle is similar to our own presented in this 

article and their estimation of the required slices of a Virtex II Xilinx device are closely equivalent to the 

Logic Elements we need from our Altera Cyclone II chip. They do not make use of an embedded processor 

in their design and they report estimated pixel clock rate up to 10 MHz. They find that a rectangular window 

can save chip resources without degrading the quality of the resulting disparity map. 

Darabiha et al. [17] describe the FPGA implementation of a stereo depth measurement algorithm based 

on Local Weighted Phase-Correlation. They use a custom board featuring four Xilinx Virtex2000E FPGAs, 

external memory and communication channels, as well as a FPGA controller chip. Their design approach is 

specific to their system, which is capable of processing disparity maps at video-rate. 

Miyajima et al. [23] report on a compact stereo system based on a FPGA prototype board and external 

memory. Their system can support disparity maps at 20 frames per second and includes a camera calibration 

circuit and left-right consistency check. 

Other FPGA implementations also exist (e.g. [24, 25]). They all show that a reconfigurable hardware 

platform is well suited for the design of a real-time stereo system for depth detection. Our system compares 

favorably with other implementations by virtue of its highly parallel, highly scalable design and its modest 

demand of chip resources. However its strongest virtue is its SOPC-ready concept of a parametrizable 

megafunction, which is able to interface with a commodity controller like Nios II. Our Avalon-interfaced co-

processor can make the design of the overall stereo system very flexible.  

Table 3 reports on the comparison between our implementation and other previous FPGA-based stereo 

systems. 

Author 
Technology 

used 
Function of 

implementation 
Algorithm Area utilization 

Image size/ 
max disparity 

Performance 

Present work 

FPGA-based 
board 

+Nios II 
controller 

+SOPC-ready 

Co-processor 
megafunction 

SAD 
22000 LE of a 

Cyclone II FPGA 
320x240/ 
64pixels 

25 Mpixels/s 
or 800x106 PDS 

S. Lee et al. [22] 
VHDL 

Synthesis 
Simulation SAD 

10000 Virtex II 
slices 

320x240/ 
64 pixels 

10 Mpixels/s 

M. Hariyama  
et al. [21] 

FPGA 
APEX20KE 

Co-processor SAD 42570 LE 
64x64/ 

- 
21 Mpixels/s 

Y. Miyajima  
et al. [23] 

FPGA-based 
prototype 

board 

Real-Time 
System 

SAD 
7100 slices of a 

XC2V6000 
Xilinx FPGA 

640x480/ 
80 pixels 

20 fps 

A. Darahiba  
et al. [17] 

Custom FPGA 
board 

Real-Time 
System 

Local 
Weighted 

Plase-
Correlation 

4 Virtex 2000E 
Xilinx FPGAs 

256x360/ 
20 pixels 

60x106 PDS 
or 30 fps 

J. Diaz et al. [25] 
FPGA-based 

prototype 
board 

Real-Time 
System 

Phase-
based stereo 

9200 slices of a 
Virtex II FPGA 

640x480/ 
9 pixels 

65 Mpixels/s 
or 585x106 PDS 

 

Table 3: Comparison with other FPGA-based stereo implementations 
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7. CONCLUSIONS    

We presented the design of a SOPC-ready hardware stereo co-processor, based on a full SAD algorithm 

implemented in a medium-scale FPGA. The design preserves window- and pixel-level parallelism and is 

fully scalable in the sense that it can grow to accommodate larger disparities by simply cascading the main 

blocks. The design is Avalon-interfaced and can be added as a VHDL megafunction in a Nios-controlled 

system-on-a-programmable-chip. It can be integrated with other VHDL blocks to form a fast vision-based 

depth-extracting application.  By doubling the number of comparisons per pixel we can expand the disparity 

range while keeping resources low, which is desirable when a low-cost medium-scale FPGA chip is used.  

The presented design can be enhanced by adding a hardware post-processing stage handling outlier 

points, like an appropriate median-filtering technique. Migrating the design to Stratix FPGAs can give 

adequate headroom to grow the design up to any desired window size or disparity range.  
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FIG. 1 

 

 

 

Fig. 1 A square window centered in one pixel of the left image is compared with all equal windows 

across the same epipolar scan-line on the right image. The blocks match when the metric of eq. (1) is 

minimized.       
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FIG. 2 

 

 

Fig. 2 Line-buffer for the production of a 3x3 comparison window        
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FIG. 3 

 

 
 
 
 

Fig. 3 The main parallel structure that computes SADs across a disparity range of 32 pixels in parallel.        
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FIG. 4  

 

   

 

 

Fig. 4 A 4-pixel stage for the calculation of the sum of absolute differences. The first square is shown in 

gate-level detail. The stage can grow by cascading, as shown in Fig. 5, to form a 32-pixel disparity structure. 

Only one streaming line per image (line a) is shown.            
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FIG. 5 

  

Fig. 5 Cascading 4-pixel blocks form the main parallel structure. Only three of eight blocks are shown. The last block on the right derives in parallel the minimum SAD.       
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FIG. 6 

 

 

 

 

Fig. 6 Parallel derivation of the minimum among four values. The matrix can expand by connecting rows and 

columns.          
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FIG. 7 

 

 
 

 

 

 

 
 
 

Fig. 7 Pixel de-multiplexing at the input stage.  Image1 pixels are delayed in a 32-pixel-deep delay-line, while 
pixels of image2 are stored in the host structure of Fig. 3.     

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

 

 

 

 

 

 

 

FIG. 8 

 

 

 
 
 
 

Fig. 8 Double comparison principle with the help of delay lines for expanding the disparity range            
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FIG. 9 

 

 

 

 

 

 

 

 
 

 
 

Fig. 9 Overall architecture of the FPGA system-on-a-programmable chip             
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FIG. 10 

 

 

 

                        
 

 
 
 

Fig. 10 Reference image from the so-called Tsukuba University series (left) and ground truth (right)      
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FIG. 11 

 

 

Fig. 11 Hardware result on a 160x120 resolution image processed with disparity range 16 pixels and a 
3x3 SAD window.       

 

  

 

 

 

 

FIG. 12 

 
 
 
 
 

         
a       b 

Fig. 12 (a) 320x240 pixels disparity map after processing with disparity range 32 pixels and a 

SAD window 3x3. (b) Median filtering of the disparity map, with a 3x3 mask.        
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FIG. 13 

 

 

        
a        b 

 
Fig. 13 (a) 320x240 pixels disparity map, after processing with disparity range 32 pixels and  a SAD window 

5x5. (b) Median filtering of the disparity map, with a 3x3 mask.       
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Table 1: Comparison between software and hardware implementation of our full-SAD algorithm 
 

RMS error in disparity units Bad matches Window size/ 

Filter Software Hardware Software Hardware 

3x3/no 0,055 0,052 38% 37% 

5x5/no 0,050 0,05 28% 27% 

3x3/median 0,042 0,049 28% 26% 

 

 

Table 2: Logic Elements and Memory bits for different parameters of the co-processor 

Image 

resolution 
SAD window 

Disparity range 

(pixels) 

Logic 

Elements 

Overhead 

needed for Nios 

+peripherals 

(LE) 

Total 

Memory bits 

80x60 3x3 16 3300 7000 176000 

160x120 3x3 16 8000 7000 186000 

160x120 3x3 16x2 (double 

comparison) 

9600 7000 202700 

320x240 3x3 32 15000 7000 196000 

320x240 5x5 32 22000 7000 216832 

 

 

Table 3: Comparison with other FPGA-based stereo implementations 
 

Author 
Technology 

used 
Function of 

implementation Algorithm Area utilization 
Image size/ 

max disparity Performance 

Present work 

FPGA-based 
board 

+Nios II 
controller 

+SOPC-ready 

Co-processor 
megafunction 

SAD 
22000 LE of a 

Cyclone II FPGA 
320x240/ 
64pixels 

25 Mpixels/s 
or 800x106 PDS 

S. Lee et al. [22] 
VHDL 

Synthesis 
Simulation SAD 

10000 Virtex II 
slices 

320x240/ 
64 pixels 

10Mpixels/s 

M. Hariyama  
et al. [21] 

FPGA 
APEX20KE 

Co-processor SAD 42570 LE 
64x64/ 

- 
21 Mpixels/s 

Y. Miyajima  
et al. [23] 

FPGA-based 
prototype 

board 

Real-Time 
System 

SAD 
7100 slices of a 

XC2V6000 
Xilinx FPGA 

640x480/ 
80 pixels 

20 fps 

A. Darahiba  
et al. [17] 

Custom FPGA 
board 

Real-Time 
System 

Local 
Weighted 

Plase-
Correlation 

4 Virtex 2000E 
Xilinx FPGAs 

256x360/ 
20 pixels 

60x106 PDS 
or 30 fps 

J. Diaz et al. [25] 
FPGA-based 

prototype 
board 

Real-Time 
System 

Phase-
based stereo 

9200 slices of a 
Virtex II FPGA 

640x480/ 
9 pixels 

65 Mpixels/s 
or 585x106 PDS 
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FIGURE CAPTIONS 

Fig. 1 A square window centered in one pixel of the left image is compared with all equal windows across 

the same epipolar scan-line on the right image. The blocks match when the metric of eq. (1) is minimized.   

 

Fig. 2 Line-buffer for the production of a 3x3 comparison window    

 

Fig. 3 The main parallel structure that computes SADs across a disparity range of 32 pixels in parallel.  
 

Fig. 4 A 4-pixel stage for the calculation of the sum of absolute differences. The first square is shown in 

gate-level detail. The stage can grow by cascading, as shown in Fig. 5, to form a 32-pixel disparity structure. 

Only one streaming line per image (line a) is shown.      

 

Fig. 5 Cascading 4-pixel blocks form the main parallel structure. Only three of eight blocks are shown. The 

last block on the right derives in parallel the minimum SA D. 

 

Fig. 6 Parallel derivation of the minimum among four values. The matrix can expand by connecting rows and 

columns.   

 

Fig. 7 Pixel de-multiplexing at the input stage.  Image1 pixels are delayed in a 32-pixel-deep delay-line, while 

pixels of image2 are stored in the host structure of Fig. 3.  

 

Fig. 8 Double comparison principle with the help of delay lines for expanding the disparity range    
 

Fig. 9 Overall architecture of the FPGA system-on-a-programmable chip         
 

Fig. 10 Reference image from the so-called Tsukuba University series (left) and ground truth (right)     
 

Fig. 11 Hardware result on a 160x120 resolution image processed with disparity range 16 pixels and a 3x3 
SAD window.      
 

Fig. 12 (a) 320x240 pixels disparity map after processing with disparity range 32 pixels and a SAD window 

3x3. (b) Median filtering of the disparity map, with a 3x3 mask.      

 

Fig. 13 (a) 320x240 pixels disparity map, after processing with disparity range 32 pixels and a SAD window 

5x5. (b) Median filtering of the disparity map, with a 3x3 mask.      
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