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Abstract—The hardware/software implementation of a custom 
vision board using minimal resources out of a reconfigurable 
platform is described. Demanding robotic vision applications in 
most cases require dedicated hardware for reliable operation. 
The designed system is based on a Cyclone IV Altera FPGA 
device that constitutes the main processing unit of the 
reconfigurable hardware and on a 32–bit Microchip PIC32 
microcontroller as a complementary processor. The main goal of 
this research is to implement image processing algorithms using 
only minimal resources of the FPGA device. The microcontroller 
serves peripheral control tasks, relieving valuable resources from 
FPGA. Video images are captured using a CMOS image sensor. 
USB connectivity with a personal computer is provided using a 
FIFO-to-USB module. Operational tasks such as frame grabbing, 
image filtering and USB communication are integrated to the 
system by implementing custom-designed controllers in VHDL. 
Image processing functions are accelerated using a fully parallel 
pipeline which is described analytically. A host computer 
interface has also been developed in order to test the overall 
system in action. The system is evaluated in terms of resource 
usage and the advantages emanating from the proposed 
architecture are discussed. 
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I.  INTRODUCTION 

During the last decades robotic applications were 
tremendously increased. Automotive industry, electronics 
manufacturing and aerospace are certain fields in which robotic 
vision is applied. Demanding robotic vision capabilities require 
dedicated hardware since it is more reliable and faster than 
software solutions. Evolution of FPGA technology has proved 
the use of reconfigurable hardware very attractive [1] and as a 
result more researchers choose FPGAs to host their designs [2-
4]. Parallel processing is the basis for accelerating iterative 
algorithms that are comprised of complex computations, like 
convolution, Fourier Transforms or other DSP operations. The 
more complex the computations, the more resources out of the 
FPGA device are needed. Although FPGA manufacturers are 
continuously announcing more powerful devices, resource 
usage constitutes an important issue for every such system.  

In this paper we present a methodology to implement image 
processing algorithms and various input-output peripherals 

hosted at a custom low-cost circuit board appropriate for 
machine vision. Every incorporated task is based on custom 
controllers designed in VHDL. For mere synthesis and 
configuration, the standard Altera Quartus II software platform 
is used. We avoid the use of more sophisticated tools for 
system-on-a-chip design, like Qsys, which may shorten design-
cycle but on the other hand are often heavily dependent on 
commercial controllers and intellectual property (IP) cores. 
Also bypassing the use of general purpose IP controllers we 
reduce needed resources to the lowest possible level, since our 
custom controllers include only the necessary features. A well 
designed and optimized custom controller in most cases 
requires fewer resources in comparison to general purpose 
multi-featured controllers. 

The board is based on Altera's Cyclone IV family FPGAs 
and is minimally equipped with peripheral devices, allowing a 
large number of pins and chip resources to be used for 
acquisition and processing tasks. Implemented input-output 
peripherals include a frame-grabber from a CMOS image 
sensor, a USB controller for host communication all designed 
in VHDL. Additional peripheral functionality and 
complementary processing is supported using a Microchip 32-
bit PIC microcontroller. As a consequence of the adopted 
design concept, the total system's cost is maintained very low. 
The expenditure for a special purpose commercial development 
board, dedicated to video processing, can rise to hundrends or 
even a few thousands of euros, which is much more than the 
final cost of the proposed custom system. 

Following from the above consideration, the main 
contribution of this paper is twofold. On the one hand the 
development of a reconfigurable platform capable of hosting 
advanced image processing and control applications, with the 
lowest possible resources, is described. The system is based on 
custom controllers for frame grabbing, USB or VGA 
communication and also allocates adequate resources for a 
minimal on-chip RAM memory. On the other hand, the total 
cost of the system is kept at a very low level. The choice of a 
low cost FPGA device, the small cost of the microcontroller 
chip and the avoidance of purchasing expensive copyrighted IP 
cores give the opportunity to limit research funding only to the 
mandatory. 



The rest of the paper is organized as follows. In Section II 
the system's hardware architecture is presented and some 
details about the system components are provided. In Sections 
III and IV the image acquisition stage and the asynchronous 
communication with FIFO-to-USB module are analyzed. In 
Section V a parallel implementation of several trivial image 
processing tasks, namely edge detection, mean value and Gauss 
image filters is presented. Section VI presents experimental 
results and an evaluation of the system in terms of resource 
usage and frame rates. Advantages of the system architecture 
and future work are also discussed. Section VII concludes the 
paper. 

II. SYSTEM ARCHITECTURE 

The system hardware follows a modular architecture. This 
means that every capability incorporated in the system requires 
an appropriate custom hardware interconnection module. The 
block diagram of the system is depicted in Fig. 1. 

 

Figure 1.  The block diagram of the hardware architecture. 

The main processing unit is consisted of a Cyclone IV 
EP4CE22E22C7 Altera FPGA device [5], its necessary 
external components such as voltage regulators, decoupling 
capacitors, a 50 MHz crystal oscillator and two header 
connectors for device configuration. The first header connector 
is for JTAG interface and is mainly used as long as 
development is in progress. The second one is for FPGA 
configuration with serial configuration memory (Active Serial 
interface) and can be used when development has been 
finalized. The above two headers have been designed for 
interconnection with USB Blaster Download Cable. Moreover 
all I/O FPGA pins are connected to four additional header 
connectors that can be considered as board expansion slots. 

The PIC32 microcontroller has also four header connectors 
used as expansion slots for I/Os. It is currently connected to the 
I2C interface of the CMOS image sensors. The communication 
between the FPGA device and the microcontroller is attained 
using free I/Os from both chips. If there is no need for 
exchanging information they can be disconnected from each 
other in order to preserve I/O resources. 

For capturing image data the 5 Mpixel MT9P031 CMOS 
color image sensor from Aptina Imaging [6] on the 
MT9P031I12STCH header board was used. The header board 
consists of the MT9P031, suitable lens and all the external 
components the image sensor needs in order to be functional. 
The sensor has a parallel digital interface for transmitting data 

and a serial I2C interface for configuration. Internal ADC has 
12-bit resolution, providing 4096 color scales. In our system 
we use the 8 most significant bits from the ADC, since they are 
adequate for our current research purposes. Interconnection 
with the FPGA device includes data signals (D3 to D11) and 
control signals, frame valid (FV), line valid (LV) and pixel 
clock (PIXCLK).  

USB connectivity with a host computer is obtained using 
the UM232H FIFO-to-USB module from FTDIChip [7]. It is 
based on FT232H chip and provides USB2.0 high speed 
connectivity. Control and bulk transfers according to USB 
protocol are hardwired. All necessary descriptor information 
for the enumeration procedure is saved on external EEPROM 
by the manufacturer at production time. The associated used 
signals are eight data bits and four control signals TXE, RXF, 
WR and RD. TXE shows if USB module can accept transmit 
data and RXF shows if there are available data to be read. 
When signals WR and RD are active, write and read internal 
sequences are launched respectively. 

Real-time image processing applications require a rate of 
many frames per second. It is well known that in real-time 
applications computers may fail due to a huge load of 
concurrent processes. Equipping the board with VGA 
connectivity can be a good solution to this issue. A custom 
hardware module was designed and implemented, comprised 
of the ADV1723 high speed triple video DAC from Analog 
Devices [8]. There are three 8-bit data buses that pass color 
information to the VGA module. Timing synchronization is 
obtained using control signals HS and VS.  

Interconnection between FPGA, microcontroller and 
peripheral custom-designed modules is depicted in Fig. 2. 

 

Figure 2.  Processing units and peripheral modules connectivity. 

III.  THE IMAGE GRABBER 

The principal prerequisite for every task we implement is 
frame grabbing. Every other functionality receives image 
frames as input. Before analyzing the VHDL implementation 
details we first examine how the CMOS image sensor produces 
data. 

MT9P031 outputs color component information of image 
pixels in a progressive scan. Pixel data start from top right 
corner of the first row and end up to the bottom left corner of 
the last row. Intervals between consecutive rows are referred as 
horizontal blanking and between consecutive frames as vertical 
blanking. Control signals FV and LV declare when sensor 
outputs data. When FV and LV signals are noticed '1' then 
sensor launches pixel data on every rising edge of PIXCLK. 
Output data are considered to be valid and can be read from 



FPGA on the next falling edge of PIXCLK. MT9P031 outputs 
image data using Bayer encoding. Bayer encoding describes 
every pixel by reducing color information to one byte instead 
of three. Even rows use the pattern Green-Red-Green-Red and 
odd rows use the pattern Blue-Green-Blue-Green. RGB color 
information for every pixel is extracted from its neighbors. The 
pattern usually is referred to as Color Filter Array (CFA) and 
the procedure of extracting full color information is called 
demosaicing.  

The Frame Grabber is implemented in VHDL using state 
machines. The clock used for the state machines is PIXCLK 
and is derived from the image sensor. The flow of state 
machines is depicted in Fig. 3. 

 

Figure 3.  Image readout state machines. 

In the “Synchronization” state the system just waits. When 
FV signal is asserted '0' then this declares that the sensor is in 
the vertical blanking interval, which means that the FPGA is 
now synchronized and can proceed to the “VerticalBlanking” 
state. When FV is asserted '1' then the FPGA enters into 
“HorizontalBlanking” state and if LV is also asserted '1' then it 
enters into “ValidImageData” state. Now, the device can read 
sensor's output. When the sensor completes transmission of the 
first row's pixel data then asserts LV to '0' and the FPGA 
device enters into “HorizontalBlanking” state. When horizontal 
blanking interval is over, LV is asserted again to '1' and the 
FPGA enters back to the “ValidImageData” state. This 
sequence will continue until sensor completes transmission of 
the last image row. Afterwards LV and FV are asserted '0' 
consecutively and the FPGA enters first into 
“HorizontalBlanking” state and finally into “VerticalBlanking” 
state. 

Image data are stored in on-chip memory. We allocate 
16Kbytes of Cyclone's internal memory to store data. The on-
chip RAM is not enough to store entire frames. This is not a 
problem since our system supports full parallelism for internal 
operations. Stored data are processed (if required) and sent to 
the output device before RAM becomes insufficient. When the 
buffer is full then subsequent data overwrite prior data. 
Parallelism provides satisfactory functionality even if we do 
not have external RAM at our disposal. 

IV.  USB COMMUNICATION  

The system uses the UM232H FIFO-to-USB module for 
USB connectivity. It takes over all low and high level 
operations for a bidirectional communication with computer's 

USB port. It uses a First In First Out buffer for transmitted or 
received data and also has a specific communication interface 
for write and read purposes. At this point of our research we 
use the USB module in asynchronous operation mode. This 
mode does not need a clock to exchange data. The timing 
diagram for a typical write is shown in Fig. 4. 

The FPGA device must assert interface signals according to 
write or read sequence in order to transmit or receive data. 
Apart from the correct order, signal assertion is subject to 
timing constraints. Timing constraints are defined from 
manufacturer and for successful transactions must be adhered 
precisely.  

 

Figure 4.  Asynchronous FIFO interface – WRITE signal 
waveforms. 

A suitable controller has been implemented in VHDL using 
state machines. The clock used for this controller is 50MHz 
and is derived from the external crystal oscillator. The state 
machines are optimized for this execution speed. The write 
sequence of state machines is depicted in Fig. 5. 

At the beginning, the FPGA controller stays at “Idle” state. 
In this state no data are sent. CMD constitutes an internal 
control signal which is asserted to '1' when FPGA wants to 
transmit data. When the CMD signal is asserted '1' from a 
process, then the controller enters to “Send” state. It stays in 
that state for as long as the TXE# signal is asserted '1', meaning 
that UM232H is busy or the FIFO buffer is full. When TXE# is 
noticed '0' the controller asserts the WR signal to '0', launches 
data on the data bus and enters into state “Intermediate 1”. 
Transition to state “Intermediate 2” occurs on the next clock 
pulse and finally the procedure arrives to the “Complete state”. 
It waits there until the CMD signal is asserted '0' by the internal 
process that asserted it '1' and then it returns to “Idle” state. The 
overall state machines sequence is designed to be fully 
compatible with UM232H write sequence. 

 

Figure 5.  WRITE sequence State Machines. 

From the host computer side, an appropriate software 
application has been developed in Visual Basic. This 
application receives image data and displays them on the 
screen. It uses D2XX vendor's driver for USB communication. 
The host application checks if there are incoming data every 



time a timer expires, which is approximately every 10 ms. If 
there are available data, the application reads them and 
reconstructs the image. When image reconstruction is 
completed, the software shows it up in a picture-box 
component. When a new frame is received the previous loaded 
image in the picture-box is refreshed. Depending on an external 
stimulus applied to our board, the host application can display 
the output result from different task-logic blocks. As discussed 
in the following paragraph, an example is a number of different 
image filters that are implemented simultaneously in the FPGA 
device. 

V. IMAGE FILTERS IMPLEMENTATION 

Parallelism not only accelerates operations but provides 
flexibility in hardware architecture. In our implementation 
parallelism of processing algorithms is performed inside 
“ValidImageData” state. We have developed certain simple 
tasks such as a Mean filter, a Gauss filter and an Edge 
Detector. The aforementioned tasks are usually required when 
we study advanced topics like stereo processing, feature 
extraction or object recognition. 

These three filters operate simultaneously in our VHDL 
implementation. Below, the 3x3 kernel matrices applied on 
input image are quoted. Kernel M is for mean filter, G is for 
Gauss filter and P1, P2 are Prewitt masks for Edge Detector. 

M =[1 1 1
1 1 1
1 1 1] , G=[1 2 1

2 4 2
1 2 1]  

P1=[1 1 1
0 0 0

− 1 − 1 − 1] , P2=[− 1 0 1
− 1 0 1
− 1 0 1]  

Parallelism requires the pixel intensities of the 3x3 image 
area, where the convolution kernel is applied, to be 
simultaneously available. As we have already mentioned, 
sensor outputs color component information using Bayer 
encoding. The total procedure requires two intermediate steps 
in order to complete processing. The first step is to extract 
pixel intensities from Bayer encoded data for every 3x3 image 
window and the second step is to apply the filter mask. The 
hardware structure is presented on Fig. 6. 

Parallelism is achieved using RAM-based shift registers. 
Sensor data are pipelined into shift registers. They are designed 
in a specific way which outputs image data from 3x3 image 
window in a progressive scan. There are two blocks of shift 
registers. Every block has two RAM-based shift registers. They 
also consisted of six single shift registers synthesized by logic 
elements. The functions “Demosaicing/Intensity Extraction” 
and “Mean Filter/Gauss Filter/Prewitt Mask” are asynchronous 
operations and propagation delay of the signals determine 
maximum processing speed. The available image window for 
both shift register blocks is depicted in Fig. 7. 

 

Figure 6.  Hardware structure in FPGA for parallelism. 

 

Figure 7.  Available image window for parallel operations. 

Demosaicing is followed by convolution using the image 
masks, while image pixels are streaming through shift registers. 
The results of the convolution are stored in on-chip RAM 
memory. The function Demosaicing can be implemented using 
several ways. In the literature many algorithms have been 
proposed [9]. One very simple algorithm is to use the mean 
value of neighboring colors. Depending on the known color 
component information of a pixel they are named as Gr, Gb, R 
or B. Table II presents how full color information is calculated 
in every case. After the Demosaicing procedure completes 
calculations for a pixel that belongs to row i and column j, 
intensities are extracted using adding the three color 
component information and dividing by 3. 

TABLE I.  DEMOSAICING PIXEL DATA 

PIXEL  Full Color Component calculation 



Red = (R(j-1,i) + R(j+1,i ))/2 

Green = Gr Gr 

Blue = (B(j,i-1) + B(j,i+1 ))/2 

Red = (R(j,i-1) + R(j,i+1 ))/2 

Green = Gb Gb 

Blue = (B(j-1,i) + B(j+1,i ))/2 

Red = R 

G1 = Gr(j-1,i) + Gr(j+1,i ) 
G1 = Gb(j,i-1) + Gb(j,i-1) 
Green = (G1 + G2)/4 R 

B1 = B(j-1,i-1) + B(j-1,i+1) 
B2 = B(j+1,i+1 ) + B(j+1,i-1) 
Blue = (B1 + B2)/4 

R1 = R(j-1,i-1) + R(j-1,i+1) 
R2 = R(j+1,i-1) + R(j+1,i+1 ) 
Red = (R1 + R2)/4 

G1 = Gb(j-1,i) + Gb(j+1,i ) 
G2 = Gr(j,i-1) + Gr(j,i+1 ) 
Green = (G1 + G2)/4 

B 

Blue = B 

 

From now on we follow the convention of naming a pixel 
that is at i th row and j th column as pj,i. Let us consider the 
example of applying aforementioned filters on a 3x3 image 
window to describe how this mechanism works in detail. A 
random window of input image is illustrated in Fig. 8. We may 
focus on the window that is highlighted with bold borders. This 
is a 4x4 window. Assume that the bottom right pixel of that 
window belongs to the random row i and column j of the input 
image. In order to apply a filter mask at pj-2,i-2 we need to know 
pixel intensities from a 3x3 window the bottom right pixel of 
which is pj-1,i-1. This means that the processing elements must 
have already calculated the intensity of pj-1,i-1 and have it 
available for use. This premises that demosaicing of pj-1,i-1 has 
been completed. In order to demosaic pj-1,i-1 and then extract the 
intensity of that pixel we need to know the color component 
from the 3x3 window of which the bottom right pixel is pj,i. 
This implies that only when FGPA has readout pj,i it will be 
able to perform filtering computations on pj-2,i-2. Hence FPGA 
must have available pixel information that are being in the bold 
4x4 window to be able to apply the processing algorithm on 
pixel pj-2,i-2. 

 

Figure 8.  Image window necessary for 3x3 convolutions. 

Mean filter implementation for pixel pj-2,i-2 includes first the 
calculation of the following matrix. 

M p j−2, i − 2
= [1�I j− 3,i− 3 1�I j− 2,i− 3 1�I j− 1,i− 3

1�I j− 3,i− 2 1�I j− 2,i− 2 1�I j − 1,i− 2

1�I j− 3,i− 1 1�I j− 2,i− 1 1�I j− 1,i− 1
] 

Naming every element of matrix M as mx,y, where x=1,2,3 
and y=1,2,3 the output image is produced as in (1). 

 I ' j − 2,i− 2=
1
9
�∑

x= 1

3

∑
y= 1

3

my , x  (1) 

Gauss filter implementation for pixel pj-2,i-2 includes the 
calculation of the following matrix. 

Gp j − 2, i− 2
=[1�I j− 3,i− 3 2�I j − 2,i− 3 1�I j− 1,i− 3

2�I j− 3,i− 2 4�I j − 2,i− 2 2�I j− 1,i− 2

1�I j− 3,i− 1 2�I j − 2,i− 1 1�I j− 1,i− 1
]  

Naming every element of matrix G as gx,y, where x=1,2,3 
and y=1,2,3 the output image is produced as in (2). 

 I ' j − 2,i− 2=
1
16
�∑

x= 1

3

∑
y= 1

3

g y , x  (2) 

Edge Detector implementation is slightly different from 
Mean and Gauss filters. First two Prewitt matrices P1 and P2 
are calculated for the pixel pj-2,i-2. 

P(1) p j − 2, i −2
=[− 1�I j− 3,i− 3 0�I j− 2,i − 3 1�I j− 1,i− 3

− 1�I j− 3,i− 2 0�I j− 2,i − 2 1�I j− 1,i− 2

− 1�I j− 3,i− 1 0�I j− 2,i − 1 1�I j− 1,i− 1
] 

P(2) p j− 2, i− 2
=[ 1�I j− 3,i −3 1�I j − 2,i− 3 1�I j − 1,i− 3

0�I j − 3, i− 2 0�I j − 2,i− 2 0�I j− 1,i− 2

− 1�I j− 3,i− 1 − 1�I j− 2, i− 1 − 1�I j − 1, i− 1
] 

Considering every element of matrix P1 and P2 as p(1)x,y and 
p(2)x,y where x=1,2,3 and y=1,2,3 the output image is produced 
as in (3). 

The magnitude of image gradient is produced as the sum of 
the absolute values of horizontal and vertical gradients instead 
of the square root of the sum of the squares of matrix elements. 
It is simpler, produces similar results and requires less 
hardware resources. In order to receive a binary edge image a 
thresholding procedure is applied. The gradient threshold is 
defined as T=40. 



 

I ' j − 2,i− 2= { 0 ,�∑
x= 1

3

∑
y= 1

3

p(1) x , y�+�∑
x= 1

3

∑
y= 1

3

p(2) x , y�< T

255,�∑
x= 1

3

∑
y= 1

3

p(1) x , y�+�∑
x= 1

3

∑
y= 1

3

p(2) x , y�> T}
 
(3) 

VI.  EXPERIMENTAL RESULTS AND SYSTEM EVALUATION 

In this section we present image results that are produced 
setting the overall system in action. All images have resolution 
640x480. In Fig. 9 test results are presented from the Frame 
Grabber and the Edge Detector. 

 

Figure 9.  Image results from Frame and Edge Detector. 

Evaluation of a system is a function of many aspects. The 
proposed custom system for video processing was basically 
motivated by the need of reduced overall cost in conjunction 
with open source code and flexible architecture. Overall 
performance is also an important issue. The final prototype 
board is demonstrated in Fig. 11 and is actually a compromise 
between the above objectives. 

Table III gives the necessary hardware resources for the 
implementation of the task logic presented in the previous 
sections. In order to implement simultaneously a mean filter, a 
Gauss filter and a Prewitt edge detector we used less than 10% 
of the available logic elements and almost half the available 
on-chip memory. This is needed for a frame size 640x480 
while for smaller images with half VGA resolution, the 
necessary memory bits are almost 75000. The reported low 
resource usage gives us the opportunity to add more features 
and task logic to our system. 

 

Figure 10.  The prototype FPGA board. 

TABLE II.  RESOURCES NEEDED FOR FRAME RESOLUTION 640X480 

Recources Available Used Percentage 

Logic elements 22320 2000 9,00% 

Pins (I/O) 80 42 52,50% 

Memory bits 608256 290904 47,83% 

The implemented FPGA task logic is capable of processing 
162 frames per second in full VGA resolution or 650 half VGA 
frames per second (fps), with a crystal oscillator at 50MHz. 
Practical processing frame rate is much more limited. The 
image sensor can capture at most 53 fps in VGA resolution. 
With its present USB configuration, the overall system in 
action sends to the computer 4 full VGA frames per second, or 
16 half VGA frames. In fact, the host application controlling 
USB connectivity in asynchronous USB mode, slows down the 
communication procedure. Using a more powerful computer or 
developing more sophisticated software can lead to a better 
overall performance. 

VII.  CONCLUSIONS 

A parallel architecture of image processing functions 
applied on a low-cost custom video-processing 
FPGA/microcontroller board, is presented. The system features 
a Cyclone IV Altera device implementing the required video 
processing task and a PIC32 microcontroller able to support 
peripheral functions. All processing functions and custom 
controllers are developed in VHDL reserving a minimal of 
available resources. The video board features a frame grabber 
suitable for CMOS image sensors using Bayer encoding and a 
USB module, providing connectivity to a host computer for 
further processing. The cost of the proposed board is very low 
compared to existing commercial video kits. The system is 
expandable and is indented to host demanding machine vision 
applications.  
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