
Acceleration of image processing algorithms using
minimal resources of custom reconfigurable hardware

John V. Vourvoulakis *
John Lygouras

Section of Electronics & Information Systems Technology
Department of Electrical & Computer Engineering,

Democritus University of Thrace,
Polytechnic school of Xanthi, Greece

* Corresponding author, e-mail address: jvourv@ee.duth.gr

John A. Kalomiros
Technological and Educational Institute of Serres,
Department of Informatics and Communications,

Terma Magnisias, 62100 Serres, Greece

Abstract—The hardware/software implementation of a custom
vision board using minimal resources out of a reconfigurable
platform is described. Demanding robotic vision applications in
most cases require dedicated hardware for reliable operation.
The designed system is based on a Cyclone IV Altera FPGA
device that constitutes the main processing unit of the
reconfigurable hardware and on a 32–bit Microchip PIC32
microcontroller as a complementary processor. The main goal of
this research is to implement image processing algorithms using
only minimal resources of the FPGA device. The microcontroller
serves peripheral control tasks, relieving valuable resources from
FPGA. Video images are captured using a CMOS image sensor.
USB connectivity with a personal computer is provided using a
FIFO-to-USB module. Operational tasks such as frame grabbing,
image filtering and USB communication are integrated to the
system by implementing custom-designed controllers in VHDL.
Image processing functions are accelerated using a fully parallel
pipeline which is described analytically. A host computer
interface has also been developed in order to test the overall
system in action. The system is evaluated in terms of resource
usage and the advantages emanating from the proposed
architecture are discussed.

Keywords; FPGA; parallelism; processing algorithm
acceleration; reconfigurable hardware

I. INTRODUCTION

During the last decades robotic applications were
tremendously increased. Automotive industry, electronics
manufacturing and aerospace are certain fields in which robotic
vision is applied. Demanding robotic vision capabilities require
dedicated hardware since it is more reliable and faster than
software solutions. Evolution of FPGA technology has proved
the use of reconfigurable hardware very attractive [1] and as a
result more researchers choose FPGAs to host their designs [2-
4]. Parallel processing is the basis for accelerating iterative
algorithms that are comprised of complex computations, like
convolution, Fourier Transforms or other DSP operations. The
more complex the computations, the more resources out of the
FPGA device are needed. Although FPGA manufacturers are
continuously announcing more powerful devices, resource
usage constitutes an important issue for every such system.

In this paper we present a methodology to implement image
processing algorithms and various input-output peripherals

hosted at a custom low-cost circuit board appropriate for
machine vision. Every incorporated task is based on custom
controllers designed in VHDL. For mere synthesis and
configuration, the standard Altera Quartus II software platform
is used. We avoid the use of more sophisticated tools for
system-on-a-chip design, like Qsys, which may shorten design-
cycle but on the other hand are often heavily dependent on
commercial controllers and intellectual property (IP) cores.
Also bypassing the use of general purpose IP controllers we
reduce needed resources to the lowest possible level, since our
custom controllers include only the necessary features. A well
designed and optimized custom controller in most cases
requires fewer resources in comparison to general purpose
multi-featured controllers.

The board is based on Altera's Cyclone IV family FPGAs
and is minimally equipped with peripheral devices, allowing a
large number of pins and chip resources to be used for
acquisition and processing tasks. Implemented input-output
peripherals include a frame-grabber from a CMOS image
sensor, a USB controller for host communication all designed
in VHDL. Additional peripheral functionality and
complementary processing is supported using a Microchip 32-
bit PIC microcontroller. As a consequence of the adopted
design concept, the total system's cost is maintained very low.
The expenditure for a special purpose commercial development
board, dedicated to video processing, can rise to hundrends or
even a few thousands of euros, which is much more than the
final cost of the proposed custom system.

Following from the above consideration, the main
contribution of this paper is twofold. On the one hand the
development of a reconfigurable platform capable of hosting
advanced image processing and control applications, with the
lowest possible resources, is described. The system is based on
custom controllers for frame grabbing, USB or VGA
communication and also allocates adequate resources for a
minimal on-chip RAM memory. On the other hand, the total
cost of the system is kept at a very low level. The choice of a
low cost FPGA device, the small cost of the microcontroller
chip and the avoidance of purchasing expensive copyrighted IP
cores give the opportunity to limit research funding only to the
mandatory.

The rest of the paper is organized as follows. In Section II
the system's hardware architecture is presented and some
details about the system components are provided. In Sections
III and IV the image acquisition stage and the asynchronous
communication with FIFO-to-USB module are analyzed. In
Section V a parallel implementation of several trivial image
processing tasks, namely edge detection, mean value and Gauss
image filters is presented. Section VI presents experimental
results and an evaluation of the system in terms of resource
usage and frame rates. Advantages of the system architecture
and future work are also discussed. Section VII concludes the
paper.

II. SYSTEM ARCHITECTURE

The system hardware follows a modular architecture. This
means that every capability incorporated in the system requires
an appropriate custom hardware interconnection module. The
block diagram of the system is depicted in Fig. 1.

Figure 1. The block diagram of the hardware architecture.

The main processing unit is consisted of a Cyclone IV
EP4CE22E22C7 Altera FPGA device [5], its necessary
external components such as voltage regulators, decoupling
capacitors, a 50 MHz crystal oscillator and two header
connectors for device configuration. The first header connector
is for JTAG interface and is mainly used as long as
development is in progress. The second one is for FPGA
configuration with serial configuration memory (Active Serial
interface) and can be used when development has been
finalized. The above two headers have been designed for
interconnection with USB Blaster Download Cable. Moreover
all I/O FPGA pins are connected to four additional header
connectors that can be considered as board expansion slots.

The PIC32 microcontroller has also four header connectors
used as expansion slots for I/Os. It is currently connected to the
I2C interface of the CMOS image sensors. The communication
between the FPGA device and the microcontroller is attained
using free I/Os from both chips. If there is no need for
exchanging information they can be disconnected from each
other in order to preserve I/O resources.

For capturing image data the 5 Mpixel MT9P031 CMOS
color image sensor from Aptina Imaging [6] on the
MT9P031I12STCH header board was used. The header board
consists of the MT9P031, suitable lens and all the external
components the image sensor needs in order to be functional.
The sensor has a parallel digital interface for transmitting data

and a serial I2C interface for configuration. Internal ADC has
12-bit resolution, providing 4096 color scales. In our system
we use the 8 most significant bits from the ADC, since they are
adequate for our current research purposes. Interconnection
with the FPGA device includes data signals (D3 to D11) and
control signals, frame valid (FV), line valid (LV) and pixel
clock (PIXCLK).

USB connectivity with a host computer is obtained using
the UM232H FIFO-to-USB module from FTDIChip [7]. It is
based on FT232H chip and provides USB2.0 high speed
connectivity. Control and bulk transfers according to USB
protocol are hardwired. All necessary descriptor information
for the enumeration procedure is saved on external EEPROM
by the manufacturer at production time. The associated used
signals are eight data bits and four control signals TXE, RXF,
WR and RD. TXE shows if USB module can accept transmit
data and RXF shows if there are available data to be read.
When signals WR and RD are active, write and read internal
sequences are launched respectively.

Real-time image processing applications require a rate of
many frames per second. It is well known that in real-time
applications computers may fail due to a huge load of
concurrent processes. Equipping the board with VGA
connectivity can be a good solution to this issue. A custom
hardware module was designed and implemented, comprised
of the ADV1723 high speed triple video DAC from Analog
Devices [8]. There are three 8-bit data buses that pass color
information to the VGA module. Timing synchronization is
obtained using control signals HS and VS.

Interconnection between FPGA, microcontroller and
peripheral custom-designed modules is depicted in Fig. 2.

Figure 2. Processing units and peripheral modules connectivity.

III. THE IMAGE GRABBER

The principal prerequisite for every task we implement is
frame grabbing. Every other functionality receives image
frames as input. Before analyzing the VHDL implementation
details we first examine how the CMOS image sensor produces
data.

MT9P031 outputs color component information of image
pixels in a progressive scan. Pixel data start from top right
corner of the first row and end up to the bottom left corner of
the last row. Intervals between consecutive rows are referred as
horizontal blanking and between consecutive frames as vertical
blanking. Control signals FV and LV declare when sensor
outputs data. When FV and LV signals are noticed '1' then
sensor launches pixel data on every rising edge of PIXCLK.
Output data are considered to be valid and can be read from

FPGA on the next falling edge of PIXCLK. MT9P031 outputs
image data using Bayer encoding. Bayer encoding describes
every pixel by reducing color information to one byte instead
of three. Even rows use the pattern Green-Red-Green-Red and
odd rows use the pattern Blue-Green-Blue-Green. RGB color
information for every pixel is extracted from its neighbors. The
pattern usually is referred to as Color Filter Array (CFA) and
the procedure of extracting full color information is called
demosaicing.

The Frame Grabber is implemented in VHDL using state
machines. The clock used for the state machines is PIXCLK
and is derived from the image sensor. The flow of state
machines is depicted in Fig. 3.

Figure 3. Image readout state machines.

In the “Synchronization” state the system just waits. When
FV signal is asserted '0' then this declares that the sensor is in
the vertical blanking interval, which means that the FPGA is
now synchronized and can proceed to the “VerticalBlanking”
state. When FV is asserted '1' then the FPGA enters into
“HorizontalBlanking” state and if LV is also asserted '1' then it
enters into “ValidImageData” state. Now, the device can read
sensor's output. When the sensor completes transmission of the
first row's pixel data then asserts LV to '0' and the FPGA
device enters into “HorizontalBlanking” state. When horizontal
blanking interval is over, LV is asserted again to '1' and the
FPGA enters back to the “ValidImageData” state. This
sequence will continue until sensor completes transmission of
the last image row. Afterwards LV and FV are asserted '0'
consecutively and the FPGA enters first into
“HorizontalBlanking” state and finally into “VerticalBlanking”
state.

Image data are stored in on-chip memory. We allocate
16Kbytes of Cyclone's internal memory to store data. The on-
chip RAM is not enough to store entire frames. This is not a
problem since our system supports full parallelism for internal
operations. Stored data are processed (if required) and sent to
the output device before RAM becomes insufficient. When the
buffer is full then subsequent data overwrite prior data.
Parallelism provides satisfactory functionality even if we do
not have external RAM at our disposal.

IV. USB COMMUNICATION

The system uses the UM232H FIFO-to-USB module for
USB connectivity. It takes over all low and high level
operations for a bidirectional communication with computer's

USB port. It uses a First In First Out buffer for transmitted or
received data and also has a specific communication interface
for write and read purposes. At this point of our research we
use the USB module in asynchronous operation mode. This
mode does not need a clock to exchange data. The timing
diagram for a typical write is shown in Fig. 4.

The FPGA device must assert interface signals according to
write or read sequence in order to transmit or receive data.
Apart from the correct order, signal assertion is subject to
timing constraints. Timing constraints are defined from
manufacturer and for successful transactions must be adhered
precisely.

Figure 4. Asynchronous FIFO interface – WRITE signal
waveforms.

A suitable controller has been implemented in VHDL using
state machines. The clock used for this controller is 50MHz
and is derived from the external crystal oscillator. The state
machines are optimized for this execution speed. The write
sequence of state machines is depicted in Fig. 5.

At the beginning, the FPGA controller stays at “Idle” state.
In this state no data are sent. CMD constitutes an internal
control signal which is asserted to '1' when FPGA wants to
transmit data. When the CMD signal is asserted '1' from a
process, then the controller enters to “Send” state. It stays in
that state for as long as the TXE# signal is asserted '1', meaning
that UM232H is busy or the FIFO buffer is full. When TXE# is
noticed '0' the controller asserts the WR signal to '0', launches
data on the data bus and enters into state “Intermediate 1”.
Transition to state “Intermediate 2” occurs on the next clock
pulse and finally the procedure arrives to the “Complete state”.
It waits there until the CMD signal is asserted '0' by the internal
process that asserted it '1' and then it returns to “Idle” state. The
overall state machines sequence is designed to be fully
compatible with UM232H write sequence.

Figure 5. WRITE sequence State Machines.

From the host computer side, an appropriate software
application has been developed in Visual Basic. This
application receives image data and displays them on the
screen. It uses D2XX vendor's driver for USB communication.
The host application checks if there are incoming data every

time a timer expires, which is approximately every 10 ms. If
there are available data, the application reads them and
reconstructs the image. When image reconstruction is
completed, the software shows it up in a picture-box
component. When a new frame is received the previous loaded
image in the picture-box is refreshed. Depending on an external
stimulus applied to our board, the host application can display
the output result from different task-logic blocks. As discussed
in the following paragraph, an example is a number of different
image filters that are implemented simultaneously in the FPGA
device.

V. IMAGE FILTERS IMPLEMENTATION

Parallelism not only accelerates operations but provides
flexibility in hardware architecture. In our implementation
parallelism of processing algorithms is performed inside
“ValidImageData” state. We have developed certain simple
tasks such as a Mean filter, a Gauss filter and an Edge
Detector. The aforementioned tasks are usually required when
we study advanced topics like stereo processing, feature
extraction or object recognition.

These three filters operate simultaneously in our VHDL
implementation. Below, the 3x3 kernel matrices applied on
input image are quoted. Kernel M is for mean filter, G is for
Gauss filter and P1, P2 are Prewitt masks for Edge Detector.

M =[1 1 1
1 1 1
1 1 1] , G=[1 2 1

2 4 2
1 2 1]

P1=[1 1 1
0 0 0

− 1 − 1 − 1] , P2=[− 1 0 1
− 1 0 1
− 1 0 1]

Parallelism requires the pixel intensities of the 3x3 image
area, where the convolution kernel is applied, to be
simultaneously available. As we have already mentioned,
sensor outputs color component information using Bayer
encoding. The total procedure requires two intermediate steps
in order to complete processing. The first step is to extract
pixel intensities from Bayer encoded data for every 3x3 image
window and the second step is to apply the filter mask. The
hardware structure is presented on Fig. 6.

Parallelism is achieved using RAM-based shift registers.
Sensor data are pipelined into shift registers. They are designed
in a specific way which outputs image data from 3x3 image
window in a progressive scan. There are two blocks of shift
registers. Every block has two RAM-based shift registers. They
also consisted of six single shift registers synthesized by logic
elements. The functions “Demosaicing/Intensity Extraction”
and “Mean Filter/Gauss Filter/Prewitt Mask” are asynchronous
operations and propagation delay of the signals determine
maximum processing speed. The available image window for
both shift register blocks is depicted in Fig. 7.

Figure 6. Hardware structure in FPGA for parallelism.

Figure 7. Available image window for parallel operations.

Demosaicing is followed by convolution using the image
masks, while image pixels are streaming through shift registers.
The results of the convolution are stored in on-chip RAM
memory. The function Demosaicing can be implemented using
several ways. In the literature many algorithms have been
proposed [9]. One very simple algorithm is to use the mean
value of neighboring colors. Depending on the known color
component information of a pixel they are named as Gr, Gb, R
or B. Table II presents how full color information is calculated
in every case. After the Demosaicing procedure completes
calculations for a pixel that belongs to row i and column j,
intensities are extracted using adding the three color
component information and dividing by 3.

TABLE I. DEMOSAICING PIXEL DATA

PIXEL Full Color Component calculation

Red = (R(j-1,i) + R(j+1,i))/2

Green = Gr Gr

Blue = (B(j,i-1) + B(j,i+1))/2

Red = (R(j,i-1) + R(j,i+1))/2

Green = Gb Gb

Blue = (B(j-1,i) + B(j+1,i))/2

Red = R

G1 = Gr(j-1,i) + Gr(j+1,i)
G1 = Gb(j,i-1) + Gb(j,i-1)
Green = (G1 + G2)/4 R

B1 = B(j-1,i-1) + B(j-1,i+1)
B2 = B(j+1,i+1) + B(j+1,i-1)
Blue = (B1 + B2)/4

R1 = R(j-1,i-1) + R(j-1,i+1)
R2 = R(j+1,i-1) + R(j+1,i+1)
Red = (R1 + R2)/4

G1 = Gb(j-1,i) + Gb(j+1,i)
G2 = Gr(j,i-1) + Gr(j,i+1)
Green = (G1 + G2)/4

B

Blue = B

From now on we follow the convention of naming a pixel
that is at i th row and j th column as pj,i. Let us consider the
example of applying aforementioned filters on a 3x3 image
window to describe how this mechanism works in detail. A
random window of input image is illustrated in Fig. 8. We may
focus on the window that is highlighted with bold borders. This
is a 4x4 window. Assume that the bottom right pixel of that
window belongs to the random row i and column j of the input
image. In order to apply a filter mask at pj-2,i-2 we need to know
pixel intensities from a 3x3 window the bottom right pixel of
which is pj-1,i-1. This means that the processing elements must
have already calculated the intensity of pj-1,i-1 and have it
available for use. This premises that demosaicing of pj-1,i-1 has
been completed. In order to demosaic pj-1,i-1 and then extract the
intensity of that pixel we need to know the color component
from the 3x3 window of which the bottom right pixel is pj,i.
This implies that only when FGPA has readout pj,i it will be
able to perform filtering computations on pj-2,i-2. Hence FPGA
must have available pixel information that are being in the bold
4x4 window to be able to apply the processing algorithm on
pixel pj-2,i-2.

Figure 8. Image window necessary for 3x3 convolutions.

Mean filter implementation for pixel pj-2,i-2 includes first the
calculation of the following matrix.

M p j−2, i − 2
= [1�I j− 3,i− 3 1�I j− 2,i− 3 1�I j− 1,i− 3

1�I j− 3,i− 2 1�I j− 2,i− 2 1�I j − 1,i− 2

1�I j− 3,i− 1 1�I j− 2,i− 1 1�I j− 1,i− 1
]

Naming every element of matrix M as mx,y, where x=1,2,3
and y=1,2,3 the output image is produced as in (1).

 I ' j − 2,i− 2=
1
9
�∑

x= 1

3

∑
y= 1

3

my , x (1)

Gauss filter implementation for pixel pj-2,i-2 includes the
calculation of the following matrix.

Gp j − 2, i− 2
=[1�I j− 3,i− 3 2�I j − 2,i− 3 1�I j− 1,i− 3

2�I j− 3,i− 2 4�I j − 2,i− 2 2�I j− 1,i− 2

1�I j− 3,i− 1 2�I j − 2,i− 1 1�I j− 1,i− 1
]

Naming every element of matrix G as gx,y, where x=1,2,3
and y=1,2,3 the output image is produced as in (2).

 I ' j − 2,i− 2=
1
16
�∑

x= 1

3

∑
y= 1

3

g y , x (2)

Edge Detector implementation is slightly different from
Mean and Gauss filters. First two Prewitt matrices P1 and P2
are calculated for the pixel pj-2,i-2.

P(1) p j − 2, i −2
=[− 1�I j− 3,i− 3 0�I j− 2,i − 3 1�I j− 1,i− 3

− 1�I j− 3,i− 2 0�I j− 2,i − 2 1�I j− 1,i− 2

− 1�I j− 3,i− 1 0�I j− 2,i − 1 1�I j− 1,i− 1
]

P(2) p j− 2, i− 2
=[1�I j− 3,i −3 1�I j − 2,i− 3 1�I j − 1,i− 3

0�I j − 3, i− 2 0�I j − 2,i− 2 0�I j− 1,i− 2

− 1�I j− 3,i− 1 − 1�I j− 2, i− 1 − 1�I j − 1, i− 1
]

Considering every element of matrix P1 and P2 as p(1)x,y and
p(2)x,y where x=1,2,3 and y=1,2,3 the output image is produced
as in (3).

The magnitude of image gradient is produced as the sum of
the absolute values of horizontal and vertical gradients instead
of the square root of the sum of the squares of matrix elements.
It is simpler, produces similar results and requires less
hardware resources. In order to receive a binary edge image a
thresholding procedure is applied. The gradient threshold is
defined as T=40.

I ' j − 2,i− 2= { 0 ,�∑
x= 1

3

∑
y= 1

3

p(1) x , y�+�∑
x= 1

3

∑
y= 1

3

p(2) x , y�< T

255,�∑
x= 1

3

∑
y= 1

3

p(1) x , y�+�∑
x= 1

3

∑
y= 1

3

p(2) x , y�> T}

(3)

VI. EXPERIMENTAL RESULTS AND SYSTEM EVALUATION

In this section we present image results that are produced
setting the overall system in action. All images have resolution
640x480. In Fig. 9 test results are presented from the Frame
Grabber and the Edge Detector.

Figure 9. Image results from Frame and Edge Detector.

Evaluation of a system is a function of many aspects. The
proposed custom system for video processing was basically
motivated by the need of reduced overall cost in conjunction
with open source code and flexible architecture. Overall
performance is also an important issue. The final prototype
board is demonstrated in Fig. 11 and is actually a compromise
between the above objectives.

Table III gives the necessary hardware resources for the
implementation of the task logic presented in the previous
sections. In order to implement simultaneously a mean filter, a
Gauss filter and a Prewitt edge detector we used less than 10%
of the available logic elements and almost half the available
on-chip memory. This is needed for a frame size 640x480
while for smaller images with half VGA resolution, the
necessary memory bits are almost 75000. The reported low
resource usage gives us the opportunity to add more features
and task logic to our system.

Figure 10. The prototype FPGA board.

TABLE II. RESOURCES NEEDED FOR FRAME RESOLUTION 640X480

Recources Available Used Percentage

Logic elements 22320 2000 9,00%

Pins (I/O) 80 42 52,50%

Memory bits 608256 290904 47,83%

The implemented FPGA task logic is capable of processing
162 frames per second in full VGA resolution or 650 half VGA
frames per second (fps), with a crystal oscillator at 50MHz.
Practical processing frame rate is much more limited. The
image sensor can capture at most 53 fps in VGA resolution.
With its present USB configuration, the overall system in
action sends to the computer 4 full VGA frames per second, or
16 half VGA frames. In fact, the host application controlling
USB connectivity in asynchronous USB mode, slows down the
communication procedure. Using a more powerful computer or
developing more sophisticated software can lead to a better
overall performance.

VII. CONCLUSIONS

A parallel architecture of image processing functions
applied on a low-cost custom video-processing
FPGA/microcontroller board, is presented. The system features
a Cyclone IV Altera device implementing the required video
processing task and a PIC32 microcontroller able to support
peripheral functions. All processing functions and custom
controllers are developed in VHDL reserving a minimal of
available resources. The video board features a frame grabber
suitable for CMOS image sensors using Bayer encoding and a
USB module, providing connectivity to a host computer for
further processing. The cost of the proposed board is very low
compared to existing commercial video kits. The system is
expandable and is indented to host demanding machine vision
applications.

REFERENCES
[1] U. Meyer_Baese, “Digital Signal Processing with Field Programmable

Gate Arrays,” Springer Berlin, Heidelberg, New York, 2007.

[2] W.J. MacLean, “An evaluation of the suitability of FPGAs for
embedded vision systems,” in: Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 3, San Diego, California, USA, June 2005, p. 131.

[3] T. Cervero, S. Lopez, G.M. Callico, F. Tobajas, V. de Armas, J. Lopez,
R. Sarmiento, “Survey of reconfigurable architectures for multimedia
applications,” VLSI Circuits and Systems IV, edited by T. Riesgo, E. de
la Torre, L. S. Indrusiak, Proc. of SPIE Vol. 7363, 736303, 2009, pp. 1-
11.

[4] J.A. Kalomiros, J. Lygouras, “Design and evaluation of a
hardware/software FPGA-based system for fast image processing,”
Microprocessors and Microsystems, Volume 32, Issue 2, March 2008,
Pages 95-106.

[5] Altera Home-page: <http://www.altera.com/>.

[6] Aptina Imaging Home-page: <http://www.aptina.com/>.

[7] FTDIChip Home-page: <http://www.ftdichip.com/>.

[8] Analog Devices Home-page: <http://www.analog.com/>.

[9] Daniele Menon, Giancarlo Calvagn, “Color image demosaicking: An
overview,” Signal Processing: Image Communication, Volume 26, Issue
8-9, October 2011, Pages 518-533.

[10] I.S. Uzun, A. Amira, A. Bouridane, “FPGA implementations of fast
Fourier transforms for real time signal and image processing,” IEE
Proceedings—Vision, Image and Signal Processing 152 (3) (2005) 283–
296.

