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Abstract— A reconfigurable architecture for dense stereo is 
presented as an observation framework for a real-time 
implementation of the simultaneous localization and 
mapping problem in robotics. The reconfigurable sensor 
detects point features as corners from stereo image pairs, 
in order to use them at the measurement update stage of 
the procedure. The main hardware blocks are a dense 
depth stereo accelerator, a left and right image corner 
detector and a stage performing left-right consistency 
check for the detected features. For the stereo-processor 
stage we have implemented and tested both a local-
matching method based on the Sum of Absolute 
Differences (SAD) and a global-matching component 
based on a maximum-likelihood dynamic programming 
technique (MLDP). The system includes a Nios II 
processor for data control and a USB 2.0 interface for host 
communication. The proposed hardware is applied as the 
sensor part in a real-time robotic localization and mapping 
experiment with the help of a small guided vehicle.  
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I.  INTRODUCTION  

Next generation intelligent vehicles technology depends 
heavily on the successful implementation of vision-based 
systems for navigation, real-time obstacle detection and path 
planning [1]. In particular, the simultaneous localization and 
mapping (SLAM) problem has been given great attention in 
recent years, since it holds the key to robust navigation in 
unknown environments [2].  

Feature extraction is a prerequisite for robot mapping and 
localization [3]. In recent years attention has been given to 
monocular and stereo-vision systems and methods have been 
proposed to extract reliable features from image data [4]. 
Various vision-based features have been used in the literature. 
Such are Harris corners and Shi-Tomasi features [5], SIFT 
descriptors [6], edge segments etc. Visual feature extraction 
and tracking in real-time is computationally demanding, 
particularly since the data rates coming from camera are much 
higher than those from other sensors.  

Stereo-vision provides a solid framework for the 
extraction of 3D structure from image data. Finding the 

correspondences between left and right image frames allows 
depth computation for scene points. Solving the 
correspondence problem is not trivial and the derivation of 
dense disparity maps is again a very demanding computational 
problem, since it requires extensive searching and 
optimization along scanlines [7].  

Field programmable gate arrays represent a flexible and 
efficient solution for accelerating stereo matching 
computations and other complex image processing tasks. In 
this paper a real-time point-feature extraction technique based 
on stereo vision is proposed and is implemented in 
reconfigurable hardware. Left and right image information is 
input to the system as a stream of 8-bit gray-scale pixels and is 
processed by several hardware stages integrated in a system-
on-a-programmable-chip. The first stage is a stereo-processor. 
Next stages are left and right image corner detectors, thinning 
stages and a final stage performing left-right consistency 
check. The integrated system features also a Nios II processor 
for data control, an external memory interface, DMA 
functions and a USB 2.0 controller for communication with a 
host computer.  

The above system is adapted to a simple mobile vehicle 
and is used as the sensor part in a simultaneous localization 
and mapping experiment. On the host part an application 
receives the stream of feature positions with their respective 
disparities. A FastSLAM algorithm is used to track and 
optimize the vehicle path and the map feature locations. 

The rest of the paper is organized as follows: In Section II 
the overall system is outlined as a block diagram. In Section III 
the stereo processing stage, the corner detection and the stage 
for left-right consistency check are presented. In Section IV the 
Nios system on a programmable chip is presented. In Section V 
the proposed hardware is used as the landmark measurement 
part for a 3-D FastSLAM localization and mapping 
experiment.  

II. THE OVERALL FEATURE DETECTOR  

The system is modeled and simulated using DSP Builder 
design software. It is synthesized with Quartus II CAD 
software by Altera corporation and is implemented targeting a 
Cyclone II device on a DSP development board. Fig. 1 shows 
a block diagram of the overall system.  A stereo head is 
developed in the laboratory with two parallel cameras adjusted 



 

 
 

 
Figure 1.  Block-diagram of the overall system  

 
in order to produce rectified image pairs. First, a dense depth 
map is produced by the stereo accelerator stage. Left and right 
image pixel streams are processed in parallel by the stereo 
processor. The stereo processor finds the correspondences 
between left and right image pixels and produces the 
disparities d=uL-uR, where uL and uR are pixel coordinates on a 
scanline. It can produce 16, 32, 49 or even more levels of 
disparity, based on the same principles but making use of 
additional hardware resources. The stereo stage can implement 
any method of local correlation or global scanline 
optimization provided that they produce a synchronized output 
in parallel with the input data streams. We test and compare 
two different implementations of stereo stages, the first based 
on a local method of correlation and the second on a 
demanding maximum-likelihood optimization algorithm based 
on dynamic programming (DP).  

In the feature extraction stage, corner detectors implement a 
simple edge detection principle based on convolution with 3x3 
Prewitt horizontal and vertical masks. Corners are produced by 
performing a binary AND operation between horizontal and 
vertical edges. Thinning stages apply a thinning algorithm 
based again on convolution with Prewitt masks and result in a 
well defined point-feature at each image corner. In the final 
stage the consistency of point-features in the left and right 
image frame is tested by comparing their horizontal 
displacement with the disparity values produced by the stereo 
stage. Only features surviving the test are transmitted to the 
host application and are processed in the 3-D map 
reconstruction phase. 

III.  ANALYSIS OF THE EMBEDDED SYSTEM STAGES 

A. Hardware implementation of SAD 

SAD represents a wide range of techniques that find 
correspondences by comparing local windows along epipolar 
lines in left and right images of the stereo-pair [7]. It has the 
advantage of a particularly simple and hardware-friendly 
metric of similarity, namely the sum of absolute differences:   
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I1 and I2 refer to intensities in the left and right image, (x,y) is 
the centre of the window in the first image, (x+d,y) is a point 
on the corresponding scan-line in the other image displaced by 
d with respect to its conjugate pair and u,v are indices inside 
the window. The point that minimizes the above measure is 
selected as the best match. This metric reduces hardware 
requirements only to additions and subtractions between 
intensities in the local windows.  

While this method requires laborious search along epipolar 
lines in serial software implementations, it can be parallelized 
in hardware, allocating parallel comparisons between local 
windows to a number of processing elements. In our system, 
shown in Fig. 2, we applied window-level parallelism across 
32 or 64 levels of disparity. A comparison window is created 
using shift registers, as shown in Fig. 2. The main processing 
element finds the absolute differences between respective 
pixels and sums the differences within each window. A 
number of D processing elements are needed for D-levels of 
disparity.  

After the D SAD values are produced in parallel, their 
minimum value is found in one clock cycle, using an array of 
parallel comparators. Each pixel in the search region is 
attributed a tag index, from 0 to D. Among all D pixels in the 
search region the one pixel that corresponds to the minimum 
SAD value wins. The derived tag index of the winning pixel is 
equal to the actual disparity value. Details of this 
implementation can be found in [8]. 
 

 
 
 

Figure 2.  Block-diagram of the SAD stereo-processor 

B. Hardware design of the DP stereo accelerator 

The second stereo algorithm implemented and tested 
performs semi-global matching based on a dynamic 
programming optimization method. The algorithm is a method 
for maximizing likelihood [9], which is computationally 
demanding and difficult to implement in real-time without 
acceleration. We refer to the algorithm as ML-DP. It is 
developed in two phases, namely the cost-plane building phase 
and the backtracking phase. The cost-plane is computed as a 
two-dimensional matrix of minimum costs, one cost-value for 
each possible correspondence Ii ↔Ij between left and right 
image intensity values, along a scan line. One always proceeds 
from left to right, as a result of the ordering constraint. Each 
point of the two-dimensional cost function is derived as the 



minimum transition cost from the three neighboring cost 
values. Transition costs result from previous costs, adding a 
matching or occlusion cost, sij or occl, according to the 
following recursive procedure: 

 
C(i,j) = min{C(i-1,j-1)+sij, C(i-1,j)+occl, C(i,j-1)+occl}     (2) 

  
In the above equations, the matching cost sij is minimized 

when there is a match between left and right intensities. The 
following dissimilarity measure was used:  
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where σ represents the standard deviation of pixel noise.  

In order to parallelize the cost-matrix computation in 
hardware, we design a variation of the maximum likelihood 
algorithm, using an adequate slice of the cost-matrix above the 
diagonal of the cost plane. We take into account only the part 
of the cost plane, where the minimum cost path is contained. 
Working within this slice, along the diagonal, allows a subset 
of D cost states perpendicular to the diagonal to result in 
parallel from the preceding subset of cost states, in step with 
the input stream of left and right image scanlines.   
 

 
 

Figure 3.  Block diagram of the stereo accelerator based on ML-DP 

Fig. 3 shows a block diagram of the stereo accelerator 
hardware system. The processing element computes the cost 
of the diagonal, vertical and horizontal transition path to each 
adjacent point of the cost matrix plane. The minimum among 
the three cost values is produced by a min-computation 
parallel stage. Tag values (-1, 0, 1) are attributed to all three 
possible paths and the wining tag, corresponding to the 
minimum cost, is stored in RAM memory, at each point of the 
cost plane. In this way, it is possible to calculate all states in 
the slice, up to the end of the cost-plane, using the same 
hardware stage. This stage receives as input the previous costs, 
along with the current left and right pixel intensities and 
produces the next subset of costs, like a state machine. This 
idea is contained in the feedback loop of the cost-plane 
computation stage in Fig. 3.  

RAM memory is implemented as M4K blocks, N 
positions deep, where N is the number of pixels per scanline. 
A number of D RAM blocks are needed for a maximum 

disparity of D pixels. Each position is 2-bit wide, since it only 
stores a tag value -1, 0 or 1. 

During backtracking, we compute N disparities for each 
one of the N scanline pixels, in N clock cycles. Winning tags 
are read from RAM memory in reverse order and are ordered 
according to the columns of the cost plane, using shift 
registers. At each step we move from one column to the next, 
following the optimum path, according to the retrieved tag 
values and using well-defined rules [9]. At each step the 
optimum path traverses vertically a tag column by a number of 
pixels equal to the change ∆d of disparity at this particular 
step. Starting with d=0 at the Nth pixel, the system tallies the 
disparity values down to the first pixel, adding ∆d at each step. 
Details of this system can be found in [10].   

 

C. Corner detector, thinner and left-right consistency check 

As mentioned above corners in the left and right images 
are formed at the cross-section of vertical and horizontal 
edges. In order to produce image gradients we convolute the 
images with 3x3 Prewitt masks. Image areas are formed with 
shift lines that store streaming input pixels (Fig. 1). Using 3x3 
windows results in a sensitive edge detector and at the same 
time keeps the required hardware resources low. Since the 
Prewitt masks contain only zeros and ones the convolution is 
implemented with adders and subtractors, as it is shown in 
[11]. A binary AND operation produces thick white spots at 
the cross section of horizontal and vertical edges. White spots 
are ones, black areas are zeros. A thinning procedure is 
applied in the next stage, implementing the steps of the 
following algorithm: 
a. Convolute a 3x3 area of the binary corner image with 
horizontal Prewitt mask. 
b. Convolute the same 3x3 area with the vertical Prewitt mask. 
c. IF the central pixel in the 3x3 area is zero OR any of the 
convolutions in steps a and b is greater than 1    
    THEN central pixel remains zero 
    ELSE central pixel is 1  

The idea behind the above hardware-friendly steps is to crop 
clusters of ones until only a central point remains.  

Finally, the consistency check is implemented by 
combining the disparity values produced in the stereo stage 
with the point features found above. Stereo and corner stages 
work in parallel and the disparities stream can be easily aligned 
with the corner image stream by means of a delay line. Each 
corner feature in the left stereo frame is compared to the 
corresponding pixel in the right image frame. The 
corresponding feature is found by displacement according to 
the disparity value. In hardware we simply use shift taps and a 
multiplexer in order to perform the above check. 

IV.  SYSTEM-ON-CHIP AND HOST APPLICATION   

The system was created as a HDL library component, 
ready for integration in a System-on-a-programmable-chip. It 
is controlled by a 32-bit Nios II processor, and includes a 
DDR2 external memory controller and a USB2.0 high speed 



controller for communication with a host computer. The 
feature detection hardware is integrated in the form of HDL 
library component. A set of DMA functions transfers data 
between units. The SOPC system is shown in Fig. 4 as a block 
diagram. We implement the system targeting a Cyclone II 
DSP board featuring a 2C35 FPGA device using 
approximately 27500 logic elements and 413632 memory bits 
out of 33,000/480000 total resources. A frame-grabber is also 
developed in the Cyclone device, while the system transfers 
data to a host application via a USB2.0 controller achieving a 
practical transfer rate greater than 60 Mbps. The host 
application receives the output from the hardware accelerator 
and uses feature positions (uL, vL) and disparities d as discrete 
landmark measurements. These measurements are used in the 
update stage of a FastSLAM simultaneous localization and 
mapping algorithm, running on the host side. This procedure is 
presented in Section V.   

 
 

 
 

Figure 4.  System-on-a-chip based on Nios-II processor 

V. EXPERIMENTAL RESULTS  AND CONCLUSIONS 

Localization and mapping experiments were carried out using 
an observation model based on point-feature measurements. A 
vehicle is guided indoors by a human operator, recording 
features in a 5.5x4.2 m room, following an almost circular 
path and completing one or two rounds. The speed on the 
direction of motion is kept constant and equal to 0.15 m/s.  
The main body of the localization and mapping algorithm is 
executed on a host computer which receives the feature stream 
produced by the proposed hardware via the USB2.0 
connection. The host application builds an observation vector 
out of the feature measurements and attributes a 3-D landmark 
position to each measurement, taking into account the robot 
pose. Robot pose and the map are updated at each step 
following Montemerlo’s FastSLAM algorithm [12]. Fig. 5 
presents a result of mapping the room and simultaneously 
localizing the vehicle, employing ten particles in the particle 
filter of our FastSLAM implementation. In this figure, map 
features are shown with dots at the room’s perimeter, while 
the circular line records the vehicle path, as estimated by the 
algorithm. As is shown in this figure, acceptable maps and 
robot paths can be estimated even with few particles. Both 
SAD and  ML-DP stereo processors described in the  previous  
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Figure 5.  Map and robot path produced by indoors experiment 

 
sections can be used, while the ML-DP stage produces better 
results with equivalent hardware resources. 
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