
A Reconfigurable Architecture for Robotic Stereo Vision

John Kalomiros
Department of Informatics and Communications,

Technological Educational Institute of Serres,
Terma Magnisias, 62124 Serres, Greece

John Lygouras
Department of Electrical Eng. & Computer Eng., School of

Engineering, Democritus University of Thrace,
Xanthi, Greece

Abstract— A reconfigurable architecture for dense stereo is
presented as an observation framework for a real-time
implementation of the simultaneous localization and
mapping problem in robotics. The reconfigurable sensor
detects point features as corners from stereo image pairs,
in order to use them at the measurement update stage of
the procedure. The main hardware blocks are a dense
depth stereo accelerator, a left and right image corner
detector and a stage performing left-right consistency
check for the detected features. For the stereo-processor
stage we have implemented and tested both a local-
matching method based on the Sum of Absolute
Differences (SAD) and a global-matching component
based on a maximum-likelihood dynamic programming
technique (MLDP). The system includes a Nios II
processor for data control and a USB 2.0 interface for host
communication. The proposed hardware is applied as the
sensor part in a real-time robotic localization and mapping
experiment with the help of a small guided vehicle.

Keywords-component; Reconfigurable systems; machine vision;
Real time systems

I. INTRODUCTION

Next generation intelligent vehicles technology depends
heavily on the successful implementation of vision-based
systems for navigation, real-time obstacle detection and path
planning [1]. In particular, the simultaneous localization and
mapping (SLAM) problem has been given great attention in
recent years, since it holds the key to robust navigation in
unknown environments [2].

Feature extraction is a prerequisite for robot mapping and
localization [3]. In recent years attention has been given to
monocular and stereo-vision systems and methods have been
proposed to extract reliable features from image data [4].
Various vision-based features have been used in the literature.
Such are Harris corners and Shi-Tomasi features [5], SIFT
descriptors [6], edge segments etc. Visual feature extraction
and tracking in real-time is computationally demanding,
particularly since the data rates coming from camera are much
higher than those from other sensors.

Stereo-vision provides a solid framework for the
extraction of 3D structure from image data. Finding the

correspondences between left and right image frames allows
depth computation for scene points. Solving the
correspondence problem is not trivial and the derivation of
dense disparity maps is again a very demanding computational
problem, since it requires extensive searching and
optimization along scanlines [7].

Field programmable gate arrays represent a flexible and
efficient solution for accelerating stereo matching
computations and other complex image processing tasks. In
this paper a real-time point-feature extraction technique based
on stereo vision is proposed and is implemented in
reconfigurable hardware. Left and right image information is
input to the system as a stream of 8-bit gray-scale pixels and is
processed by several hardware stages integrated in a system-
on-a-programmable-chip. The first stage is a stereo-processor.
Next stages are left and right image corner detectors, thinning
stages and a final stage performing left-right consistency
check. The integrated system features also a Nios II processor
for data control, an external memory interface, DMA
functions and a USB 2.0 controller for communication with a
host computer.

The above system is adapted to a simple mobile vehicle
and is used as the sensor part in a simultaneous localization
and mapping experiment. On the host part an application
receives the stream of feature positions with their respective
disparities. A FastSLAM algorithm is used to track and
optimize the vehicle path and the map feature locations.

The rest of the paper is organized as follows: In Section II
the overall system is outlined as a block diagram. In Section III
the stereo processing stage, the corner detection and the stage
for left-right consistency check are presented. In Section IV the
Nios system on a programmable chip is presented. In Section V
the proposed hardware is used as the landmark measurement
part for a 3-D FastSLAM localization and mapping
experiment.

II. THE OVERALL FEATURE DETECTOR

The system is modeled and simulated using DSP Builder
design software. It is synthesized with Quartus II CAD
software by Altera corporation and is implemented targeting a
Cyclone II device on a DSP development board. Fig. 1 shows
a block diagram of the overall system. A stereo head is
developed in the laboratory with two parallel cameras adjusted

Figure 1. Block-diagram of the overall system

in order to produce rectified image pairs. First, a dense depth
map is produced by the stereo accelerator stage. Left and right
image pixel streams are processed in parallel by the stereo
processor. The stereo processor finds the correspondences
between left and right image pixels and produces the
disparities d=uL-uR, where uL and uR are pixel coordinates on a
scanline. It can produce 16, 32, 49 or even more levels of
disparity, based on the same principles but making use of
additional hardware resources. The stereo stage can implement
any method of local correlation or global scanline
optimization provided that they produce a synchronized output
in parallel with the input data streams. We test and compare
two different implementations of stereo stages, the first based
on a local method of correlation and the second on a
demanding maximum-likelihood optimization algorithm based
on dynamic programming (DP).

In the feature extraction stage, corner detectors implement a
simple edge detection principle based on convolution with 3x3
Prewitt horizontal and vertical masks. Corners are produced by
performing a binary AND operation between horizontal and
vertical edges. Thinning stages apply a thinning algorithm
based again on convolution with Prewitt masks and result in a
well defined point-feature at each image corner. In the final
stage the consistency of point-features in the left and right
image frame is tested by comparing their horizontal
displacement with the disparity values produced by the stereo
stage. Only features surviving the test are transmitted to the
host application and are processed in the 3-D map
reconstruction phase.

III. ANALYSIS OF THE EMBEDDED SYSTEM STAGES

A. Hardware implementation of SAD

SAD represents a wide range of techniques that find
correspondences by comparing local windows along epipolar
lines in left and right images of the stereo-pair [7]. It has the
advantage of a particularly simple and hardware-friendly
metric of similarity, namely the sum of absolute differences:

∑ +++−++

vu

yvdxuIyvxuI
,

21),(),((. (1)

I1 and I2 refer to intensities in the left and right image, (x,y) is
the centre of the window in the first image, (x+d,y) is a point
on the corresponding scan-line in the other image displaced by
d with respect to its conjugate pair and u,v are indices inside
the window. The point that minimizes the above measure is
selected as the best match. This metric reduces hardware
requirements only to additions and subtractions between
intensities in the local windows.

While this method requires laborious search along epipolar
lines in serial software implementations, it can be parallelized
in hardware, allocating parallel comparisons between local
windows to a number of processing elements. In our system,
shown in Fig. 2, we applied window-level parallelism across
32 or 64 levels of disparity. A comparison window is created
using shift registers, as shown in Fig. 2. The main processing
element finds the absolute differences between respective
pixels and sums the differences within each window. A
number of D processing elements are needed for D-levels of
disparity.

After the D SAD values are produced in parallel, their
minimum value is found in one clock cycle, using an array of
parallel comparators. Each pixel in the search region is
attributed a tag index, from 0 to D. Among all D pixels in the
search region the one pixel that corresponds to the minimum
SAD value wins. The derived tag index of the winning pixel is
equal to the actual disparity value. Details of this
implementation can be found in [8].

Figure 2. Block-diagram of the SAD stereo-processor

B. Hardware design of the DP stereo accelerator

The second stereo algorithm implemented and tested
performs semi-global matching based on a dynamic
programming optimization method. The algorithm is a method
for maximizing likelihood [9], which is computationally
demanding and difficult to implement in real-time without
acceleration. We refer to the algorithm as ML-DP. It is
developed in two phases, namely the cost-plane building phase
and the backtracking phase. The cost-plane is computed as a
two-dimensional matrix of minimum costs, one cost-value for
each possible correspondence Ii ↔Ij between left and right
image intensity values, along a scan line. One always proceeds
from left to right, as a result of the ordering constraint. Each
point of the two-dimensional cost function is derived as the

minimum transition cost from the three neighboring cost
values. Transition costs result from previous costs, adding a
matching or occlusion cost, sij or occl, according to the
following recursive procedure:

C(i,j) = min{C(i-1,j-1)+sij, C(i-1,j)+occl, C(i,j-1)+occl} (2)

In the above equations, the matching cost sij is minimized

when there is a match between left and right intensities. The
following dissimilarity measure was used:

2

2))()((

σ

jIiI
s rl

ij

−
= , (3)

where σ represents the standard deviation of pixel noise.

In order to parallelize the cost-matrix computation in
hardware, we design a variation of the maximum likelihood
algorithm, using an adequate slice of the cost-matrix above the
diagonal of the cost plane. We take into account only the part
of the cost plane, where the minimum cost path is contained.
Working within this slice, along the diagonal, allows a subset
of D cost states perpendicular to the diagonal to result in
parallel from the preceding subset of cost states, in step with
the input stream of left and right image scanlines.

Figure 3. Block diagram of the stereo accelerator based on ML-DP

Fig. 3 shows a block diagram of the stereo accelerator
hardware system. The processing element computes the cost
of the diagonal, vertical and horizontal transition path to each
adjacent point of the cost matrix plane. The minimum among
the three cost values is produced by a min-computation
parallel stage. Tag values (-1, 0, 1) are attributed to all three
possible paths and the wining tag, corresponding to the
minimum cost, is stored in RAM memory, at each point of the
cost plane. In this way, it is possible to calculate all states in
the slice, up to the end of the cost-plane, using the same
hardware stage. This stage receives as input the previous costs,
along with the current left and right pixel intensities and
produces the next subset of costs, like a state machine. This
idea is contained in the feedback loop of the cost-plane
computation stage in Fig. 3.

RAM memory is implemented as M4K blocks, N
positions deep, where N is the number of pixels per scanline.
A number of D RAM blocks are needed for a maximum

disparity of D pixels. Each position is 2-bit wide, since it only
stores a tag value -1, 0 or 1.

During backtracking, we compute N disparities for each
one of the N scanline pixels, in N clock cycles. Winning tags
are read from RAM memory in reverse order and are ordered
according to the columns of the cost plane, using shift
registers. At each step we move from one column to the next,
following the optimum path, according to the retrieved tag
values and using well-defined rules [9]. At each step the
optimum path traverses vertically a tag column by a number of
pixels equal to the change ∆d of disparity at this particular
step. Starting with d=0 at the Nth pixel, the system tallies the
disparity values down to the first pixel, adding ∆d at each step.
Details of this system can be found in [10].

C. Corner detector, thinner and left-right consistency check

As mentioned above corners in the left and right images
are formed at the cross-section of vertical and horizontal
edges. In order to produce image gradients we convolute the
images with 3x3 Prewitt masks. Image areas are formed with
shift lines that store streaming input pixels (Fig. 1). Using 3x3
windows results in a sensitive edge detector and at the same
time keeps the required hardware resources low. Since the
Prewitt masks contain only zeros and ones the convolution is
implemented with adders and subtractors, as it is shown in
[11]. A binary AND operation produces thick white spots at
the cross section of horizontal and vertical edges. White spots
are ones, black areas are zeros. A thinning procedure is
applied in the next stage, implementing the steps of the
following algorithm:
a. Convolute a 3x3 area of the binary corner image with
horizontal Prewitt mask.
b. Convolute the same 3x3 area with the vertical Prewitt mask.
c. IF the central pixel in the 3x3 area is zero OR any of the
convolutions in steps a and b is greater than 1
 THEN central pixel remains zero
 ELSE central pixel is 1

The idea behind the above hardware-friendly steps is to crop
clusters of ones until only a central point remains.

Finally, the consistency check is implemented by
combining the disparity values produced in the stereo stage
with the point features found above. Stereo and corner stages
work in parallel and the disparities stream can be easily aligned
with the corner image stream by means of a delay line. Each
corner feature in the left stereo frame is compared to the
corresponding pixel in the right image frame. The
corresponding feature is found by displacement according to
the disparity value. In hardware we simply use shift taps and a
multiplexer in order to perform the above check.

IV. SYSTEM-ON-CHIP AND HOST APPLICATION

The system was created as a HDL library component,
ready for integration in a System-on-a-programmable-chip. It
is controlled by a 32-bit Nios II processor, and includes a
DDR2 external memory controller and a USB2.0 high speed

controller for communication with a host computer. The
feature detection hardware is integrated in the form of HDL
library component. A set of DMA functions transfers data
between units. The SOPC system is shown in Fig. 4 as a block
diagram. We implement the system targeting a Cyclone II
DSP board featuring a 2C35 FPGA device using
approximately 27500 logic elements and 413632 memory bits
out of 33,000/480000 total resources. A frame-grabber is also
developed in the Cyclone device, while the system transfers
data to a host application via a USB2.0 controller achieving a
practical transfer rate greater than 60 Mbps. The host
application receives the output from the hardware accelerator
and uses feature positions (uL, vL) and disparities d as discrete
landmark measurements. These measurements are used in the
update stage of a FastSLAM simultaneous localization and
mapping algorithm, running on the host side. This procedure is
presented in Section V.

Figure 4. System-on-a-chip based on Nios-II processor

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

Localization and mapping experiments were carried out using
an observation model based on point-feature measurements. A
vehicle is guided indoors by a human operator, recording
features in a 5.5x4.2 m room, following an almost circular
path and completing one or two rounds. The speed on the
direction of motion is kept constant and equal to 0.15 m/s.
The main body of the localization and mapping algorithm is
executed on a host computer which receives the feature stream
produced by the proposed hardware via the USB2.0
connection. The host application builds an observation vector
out of the feature measurements and attributes a 3-D landmark
position to each measurement, taking into account the robot
pose. Robot pose and the map are updated at each step
following Montemerlo’s FastSLAM algorithm [12]. Fig. 5
presents a result of mapping the room and simultaneously
localizing the vehicle, employing ten particles in the particle
filter of our FastSLAM implementation. In this figure, map
features are shown with dots at the room’s perimeter, while
the circular line records the vehicle path, as estimated by the
algorithm. As is shown in this figure, acceptable maps and
robot paths can be estimated even with few particles. Both
SAD and ML-DP stereo processors described in the previous

-5

0

5
-2

-1

0

1

2

3

40

1

2

y (m)
x (m)

z
(m

)

Figure 5. Map and robot path produced by indoors experiment

sections can be used, while the ML-DP stage produces better
results with equivalent hardware resources.

REFERENCES

[1] W. van der Mark and D. Gavrila, “Real-time dense stereo for intelligent

Vehicles”, IEEE Transactions on Intelligent Transportation Systems,
vol. 7, no. 1, pp. 38-50, 2006.

[2] S. Thrun, “Robotic Mapping: A Survey. Exploring Artificial Intelligence
in the New Millenium”, Morgan Kaufmann, 2002.

[3] S. Se, D. Lowe, J. Little, “Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks”, Int. Journ. Robotics
Research, vol. 21, no. 8, pp. 735-758, 2002.

[4] A. Davison, I. Reid, N. Motton, and Olivier Stasse, “MonoSLAM: Real-
Time Single Camera SLAM”, IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 1-16, 2007.

[5] J. Shi, and C. Tomasi, “Good features to track”, IEEE Computer Society
Conference on Computer Vision and Pattern recognition (CVPR ’94),
pp. 593-600, June 1994.

[6] D. G. Lowe, “Distinctive Image Features from Scale Invariant
Keypoints”, International Journal of Computer Vision, vol. 60 (2) pp.91-
110, 2004.

[7] M. Brown, D. Burschka, and G. Hager, “Advances in Computational
Stereo”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
25, no. 8, pp. 993-1008, Aug. 2003.

[8] J. Kalomiros and J. Lygouras, “Hardware implementation of a stereo co-
processor in a medium-scale FPGA”, IET Computers and Digital
Techniques, vol. 2, No 5, pp. 336-346 (2008).

[9] I. J. Cox, S. Hingorani, S. B. Rao, and B. M. Maggs, “A Maximum
Likelihood Stereo Algorithm”, Computer Vision and Image
Understanding, vol. 63, no. 3, pp. 542-567, 1996.

[10] J. Kalomiros and J. Lygouras, “Design and hardware implementation of
a stereo-matching system based on dynamic programming”,
Microprocessors and Microsystems, vol. 35, pp. 496-509 (2011).

[11] J. Kalomiros and J. Lygouras, “Design and Evaluation of a
hardware/software FPGA-based system for fast image processing”,
Microprocessors and Microsystems, vol. 32 (2) (2008) 95-106.

[12] M. Montemerlo, S. Thrun, “FastSLAM, a scalable method for the
Simultaneous Localization and Mapping problem in Robotics”, Springer
Tracts in Advanced Robotics, vol 27, B. Sicilinao, O. Khatib, F. Groen,
Editors, Springer-Verlag, Berlin Heidelberg, 2006.

