
John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 43

REAL TIME DATA ACQUISITION SYSTEM FOR THE ECP-EPP
PARALLEL PORT BASED ON PIC16F877 MICROCONTROLLER

John A. Kalomiros

Technical and Educational Institute of Serres, Greece,

Department of Informatics and Communications
P.O. Box 1006, 62110, Serres, Greece

ikalom@de.sch.gr

Abstract: The design of a simple and low cost 10-bit data acquisition system is presented which makes use of the
peripherals of a PIC16F877 microcontroller, interfacing with a personal computer using the extended capabilities of
the parallel port. The system is integrated with a visual programming tool based on LabVIEW data acquisition
software, which provides design flexibility and real time signal processing capabilities. An optimum assembly code for
the PIC microcontroller allows for a free-running mean sampling rate of 100KSps on a Pentium PC running Windows
XP OS. This system can be an example of a low cost integrated approach for data acquisition that includes a
microcontroller, a personal computer and visual measurement software. The system can be the basis of a A/D interface
for many measurement applications and can also be seen as an educational paradigm in itself. An effective and fast
DAC solution is also presented in full integration with the microcontroller and the computer parallel port.

Keywords: Data acquisition, Microcontrollers, Real-time systems, Computer interfaces, Parallel port, LabView.

1. INTRODUCTION
Computer based data acquisition systems have

become very common during the last fifteen years
and prevail in many measurement applications that
follow a low cost modular design [1,2]. They usually
consist of a PCI or PXI computer card with a
number of configurable analog input and output
channels, digital inputs and outputs as well as inputs
for triggering and timing signals [3]. The system is
characterized by the total number of channels, its bit
analysis and sampling rate. A basic twelve bits of
analysis with a sampling rate of about 150 KSps
may rise to a total cost in the range of several
hundred Euros. The system is flexible but still its use
requires some programming skills and a basic
understanding of the architectural details in terms of
configurable registers and memory mapping. A
particular drawback of such a design is the need of a
dedicated computer system and limited portability.

An alternative to the above are devices external
to the computer system, connected to the computer
through a serial interface, like a COM port or USB
port. RS232 devices have a widespread use,
especially in educationally oriented applications, in
various types of “Computer Based Laboratories” or
CBLs. They usually function as data loggers rather
than real time data acquisition systems, due to the

limited baud rate, but can also monitor slowly
varying signals in real time. USB 2.0 devices
support high transfer rates and can compete with
boards based on PCI bus but they cost twice as much
as the later [4]. However, along with IEEE 1394
(firewire) external data acquisition devices they
constitute a smart and flexible if expensive solution,
able to cover most future needs.

The parallel interface was traditionally used as a
printer or scanner port before it was supplanted by
the USB port. It is still located in most desktop
computer motherboards and provides an easy, fast
and well documented interface for data interchange
with all kinds of custom devices. The initial printer
port evolved into a bi-directional Extended
Capabilities Port and supports an enhanced protocol
for data transfer that can cover a wide range of needs
[5]. It can be addressed in a straightforward manner
through globally addressable registers and can even
be served by an interrupt request [6]. It presents the
easiest way for the design of custom peripherals,
since it does not require the use of a controller, like a
UART or a USB peripheral controller. Moreover it
is supported by driver software designed for all PC
based operating systems, so it can be addressed from
within most visual programming languages, like
Visual Basic, Visual C or LabVIEW.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 44

Inspite of the above flexibility, the parallel port
has not been used often in order to support data
acquisition devices, because of its legacy use as a
dedicated printer port. However it might present an
interesting alternative now that USB ports cover
most peripheral interfacing needs.

Another aspect of data acquisition systems is
measurement software. National Instruments (NI)
provides LabVIEW, a software for the development
of data acquisition applications and data processing,
while Mathworks also provides a toolbox for data
acquisition along with Matlab, their software for
engineering mathematics and simulation. Both tools
are powerful, while NI’s software is better suited for
easy interfacing and measurement processing, as it
incorporates a large number of ready device drivers
within a graphic interface. A number of other tools,
based on visual programming languages, also
present interesting alternatives.

Finally, microcontrollers play today an important
role in all kinds of automated control systems and
come equipped with many peripherals, like analog to
digital converters, UARTS, PIOs, I2C interfaces or
even USB controllers. Although they are limited to
executing code following the von-Neumann serial
philosophy, they can run at clock speeds that support
fast applications, like DSP. It is only inevitable that
microcontrollers are used in data acquisition
applications and computer interfacing as well.

In this paper we present the design of a data
acquisition system that makes use of the peripheral
capabilities of a PIC16F877 microcontroller driven
by a clock frequency of 20MHz. In this system we
integrate the microcontroller with the ECP parallel
port and with LabVIEW software. As a result we
produce a very low cost A/D computer interface that
is capable to cover a wide range of applications in
the field of digital measurements. The system can be
enhanced by upgrading the microcontroller with a
higher member of the Microchip family but
performance is limited by the data exchange
capabilities of the parallel port in ECP mode.
Depending on the computer motherboard the system
can provide a mean “free-running” sampling rate of
100KSps on a Pentium III and can support more
than 150Ksps for faster systems. The analysis is
limited to 10 bits by the PIC16F877 microcontroller
A/D module. We also present a DAC module
integrated with the microcontroller, able to produce
waveforms in the acoustic region of frequencies.

The system serves as an example of simple
architecture that makes use of up-to-date off the
shelf software solutions and easy to use interfacing
in order to achieve acceptable data rates at a fraction
of the cost.

2. ARCHITECTURE OF THE ENHANCED
PARALLEL PORT

The design that follows is based on the extended
capabilities of the enhanced parallel port which is
standard equipment for most motherboards of
desktop PCs. The extended capabilities are activated
through the BIOS settings of the computer, by
selecting ECP and EPP1.9 from within the
Integrated Peripherals menu. Fig. 1 presents the
basic architecture and the memory mapped registers
corresponding to each group of pins. Also, it shows
the input or output use of each register. In addition
to this layout one should also mention the ECR
register (Extended Control Register) found in Base
address + 402h. Base address in the above
architecture usually is address 378h for LPT1 or can
be retrieved for all LPTs by reading the BIOS
addresses 0000:0408 through 0000:040E.

IN
P/

OU
T

8-
BI

T

BA
SE

 A
DD

RE
SS

D0

D1

D4

D5

D6

D7

D3

D2

ST ROBE

AUT O_FEED

INIT

SEL_INP

CO
NT

RO
L

RE
GI

ST
ER

AD
DR

ES
S

BA
SE

+2

BUSY

ACK

SELECT

ERROR

P AP ER_END

b0

b1

b2

b3

b3

b4

b5

b7

b6
ST

AT
US

 R
EG

IS
TE

R

AD
DR

ES
S

BA
SE

 +
1

IN
PU

T

DA
TA

 R
EG

OU
TP

UT

C
O

N
N

E
C

TO
R

 D
B

25

13
25
12
24
11
23
10
22
9

21
8

20
7

19
6

18
5

17
4

16
3

15
2

14
1

Fig. 1 – Architecture of the parallel port

In the DAQ interface presented in this paper the

DATA register is used in bi-directional mode, for
data input and output. As discussed in the next
paragraph, this register reads the high byte of the
A/D conversion as it is transmitted from the PIC port
labeled D (PORTD). In reverse, DATA register
outputs data that are read from PORTD in input
mode and are loaded to programmable PIC registers.
The STATUS register of the parallel port is used for
input and receives the two least significant bits of
the A/D conversion. Bit b3 of the STATUS register
also receives handshaking signals from the
microcontroller. The CONTROL register of the
parallel port is used for output of control signals.
These signals include handshaking to PIC using

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 45

STROBE pin, and mode select information that
controls the execution flow of the PIC code.

When digital-to-analog mode is selected, DATA
register is used to transfer a byte to a register in
order to control DAC frequency. An alternating
analog signal is then produced at the output of a
XR2206 integrated circuit, as explained in the
following paragraph.

3. HARDWARE DESIGN
Fig. 2 shows the basic hardware design of the

A/D interface. Architectural details for this
microcontroller can be found in Ref. 7. PORTA of
the microcontroller is used mainly for analog data
input (pins 2, 3, 7), but it can be configured into any
combination of analog or digital I/O. The TOCKI
input (pin 6) receives handshaking digital input from
the STROBE bit of the parallel port. PORTD serves
as the main channel of communication for data
exchange with the computer and is connected to the
bi-directional DATA register of the parallel port. As
mentioned, this channel transmits the high byte of
the left-justified A/D conversion result or receives
control data from the computer and adjusts the
operating mode of the microcontroller by writing to
the appropriate PIC registers. PORTB plays a

multiple role. Bits RB6 and RB7 transmit the two
least significant bits of the 10-bit result of the A/D
conversion to the computer. These bits are read by
the STATUS register of the parallel port (b4 and b5),
which is used for input to the PC. Bits RB1 and RB2
of PORTB receive data from bits b2 and b3 of the
CONTROL register of the parallel port. As
mentioned, these signals are used for assembly code
flow control. Accurate transfer of data from the
microcontroller to the computer and vice versa is
attained by applying a simple custom handshaking
protocol. When the microcontroller has a data set
ready for transmission it sets RB3 of PORTB which
is polled by b3 of the STATUS register of the
computer parallel port. When the computer asks to
transfer data to the microcontroller it sends an active
low STROBE signal to the TOCKI bit (RA4 or pin
6) of the microcontroller. When expecting data the
microcontroller is put in a waiting state and polls the
TOCKI bit. Generally, during a bulk transfer of data
between the two devices, the one is always polling
for a handshake signal and receives data upon
exiting the polling state, while the other prepares and
transmits the data set and pulls the handshake line in
order to end the procedure.

Fig. 2 - Basic hardware design

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 46

Fig. 3 shows the design of the digital-to-analog
(DAC) module. It is based on a XR2206 monolithic
waveform generator, which is capable to produce
high accuracy sine, pulse, sawtooth or triangular
signals. The frequency range of the circuit can be
selected externally, by adjusting the value of an
external capacitor connected between pins 5 and 6,
while a micrometric variation of the output
frequency can be achieved by varying the voltage
applied at pin 7. This voltage is produced by a
digital to analog DAC0832 R-2R circuit driven by
PORTC of the microcontroller.

The frequency control byte is transmitted through
the parallel port and is read from PORTD of the
microcontroller when appropriate mode is selected
through CONTROL register bits b2 and b3 (pins 16
and 17 of the parallel port connector - see Fig. 2).
Upon DAC mode selection (see Table 1) an
appropriate PIC subroutine is executed and the
frequency control byte is read and latched on
PORTC.

Capacitor values are chosen through relays
(relay1 and 2 in Fig. 3) driven by digital output RB4,
RB5 of the microcontroller (pins 37, 38).

RB4 and RB5 combination is produced with respect
to mode select values of input bits RB1 and RB2 of
PORTB (see Fig. 2). Table 1 shows mode selection
data as transmitted by CONTROL register and read
by RB1 and RB2.

Table 1. Function mode selection
RB1 RB2 Function Capacitor selection,

driven by RB4, RB5
0 0 ADC irrelevant
1 0 DAC 100nF (default)
0 1 DAC 10nF
1 1 DAC 1nF

4. DESIGN OF SOFTWARE INTERFACE

The software needed for this application is
divided in code written for the PIC microcontroller
and code written for the host computer in the form of
user interface and device drivers.

sinus output

+15V

+15V

+5V

+15V

+15V

-15V
-15V

+15V

15V

1 2 3 4 5 6 7 8

910111213141516

XR 2206

20

Input Code

D_inp

3

10

control voltage
1

2

Áðü
74LS273

DAC0832

DI0
7

DI1
6

DI2
5

DI3
4

DI4
16

DI5
15

DI614

DI7
13

CS
1

WR1
2

WR2
18

ILE
19

XFER
17

VREF
8

IOUT1

11IOUT2

12

RFB

9

pot
100K

R1
220

R3
4.7K

R7 680+

10uF

+

1uF

+
1uF

R2
10K

R4

4.7K

R6
4.7K

R8 15K

+

-

1/2 LF353

3

2

1

8

4

+

-

1/2 LF353

5

6

7

8

4

10K

22K

relay1

relay2

100nF
10nF 1nF

BC546

BC546

1K

1K

Fig. 3 – DAC module integrated with the microcontroller and the ECP parallel port

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 47

Device drivers and user interface are produced
using LabVIEW 7.1 development system software,
copyrighted by National Instruments Corporation.
We used a modular approach and designed a number
of hierarchical blocks each one controlling a
particular function [9]. In this way one can produce
any sequential procedure of the basic functions by
simply rearranging the given blocks in due order and
adding appropriate processing functions, time
delays, graphs and controls wherever needed.

The basic flow chart for device initialization and
data acquisition is as follows:
1. We select ADC or DAC mode.
2. We read ECR register found in address

“Base+402h” and set b5 in order to select Byte
mode for the EPP parallel port (see Ref. 8).

3. We read CONTROL register of the parallel port
in location 37Ah and we clear b5 in order to set
DATA register of the bi-directional parallel port
to output mode.

4. We program ADCON0 register of the
PIC16F877 microcontroller by transmitting the
byte “01000001” through the DATA register of
the parallel port. This code turns on the A/D
module of the microcontroller and sets the
conversion speed to its maximum value (in this
way we actually drive the PIC by overclocking,
but it works fine).

5. We reset the microcontroller by sending a zero
bit to MCLR. For this purpose we pull down
AUTOFEED (b1 of the CONTROL register), as
shown in Fig. 3.

6. We pull down SROBE bit of the parallel port
CONTROL register, initiating handshaking. The

microcontroller reads PORTD and writes
ADCON0.

7. We set b5 of CONTROL register in order to set
DATA register of the parallel port into input mode.

There follows the flow chart for bulk data
acquisition. In this subroutine a large set of sampled
data is transferred to the computer following A/D
conversions. The following code is included into a
FOR loop:
1. We set STROBE bit.
2. We poll b3 of microcontroller PORTB in a

WHILE loop, waiting for the end of A/D
conversion.

3. Upon finishing the conversion the
microcontroller places the high byte of the 10 bit
conversion on PORTD. The two lower bits are
placed on RB6 and RB7 of PORTB. The
microcontroller code sets b3 of PORTB and is
put into a waiting state, polling the TOCKI bit.

4. When the WHILE loop ends, the high byte of
the A/D conversion is read through DATA
register, while the two lower bits are read
through STATUS register (see also paragraph 3).

5. When the host computer finishes reading the
conversion bytes it pulls down the STROBE bit
of the CONTROL register.

6. The microcontroller exits the waiting state and
starts a new conversion.

7. The host computer executes next turn of the
FOR loop. It waits in the WHILE loop polling
RB3 (b3 of PORTB).

8. The procedure goes on until all scheduled
conversions are transferred.

Fig. 4 – User interface made with LabVIEW software

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 48

From the microcontroller side, we first initialize
the ports and set them appropriately for input or for
output. Bits b0, b1, b2 of PORTB are set as inputs,
while b3, b4, b5, b6, b7 are set as outputs.

We then read bits RB1 and RB2 and set the
function mode accordingly. We either execute a
“acquisition” subroutine, where we setup a
conversion and output data according to step 3 of the
above algorithm or execute a “analog_out” subroutine
where the microcontroller receives a frequency
control byte and outputs data according to paragraph
3. We switch the function of PORTD to input or
output according to I/O needs. Register ADCON0 is
configured with data transmitted from the host
computer and so can be configured ADCON1 if we
need to have control over channel selection.

Fig. 4 shows the front panel of a virtual
instrument designed with LabVIEW software for
data acquisition. The corresponding block diagram
with graphic code is shown in Fig. 5. In the same
manner one can add to this modular design by
adding hierarchical blocks for particular needs. Such
a simple and straightforward programming approach
is also suitable for the classroom.

Fig. 5 - Sequential block diagram constructed with

hierarchical blocks

5. CONCLUSIONS
In this article a very compact and low-cost DAQ

architecture was presented in the form of an external
device interfacing with the computer by means of
the ECP parallel port. This system is an example of
an effective integration between microcontroller,
computer interface and software design. The
microcontroller runs at 20MHz and has a command
execution cycle of 250 ns. By allowing
overclocking of the A/D module of the
microcontroller we attain a 10-bit conversion time of
approximately 8µs. Sampling frequency was
measured to be up to 150 KHz on a Pentium IV
platform and it maintains a mean “free-running”
value of about 100KHz on slower systems. Free-
running frequency is defined as the full speed
frequency that is allowed by the custom protocol
described in paragraph 3 of this article. Sampling
frequency can be controlled by executing delay
subroutines between samples.

User interface and system drivers were designed
using LabVIEW software that allows addressing the
registers of the enhanced parallel port from within
Windows XP OS. Graphical programming in
LabVIEW can easily be condensed into hierarchical
blocks that only need to be connected with
appropriate input controls and output graphs or
indicators. In this way we construct a very flexible
platform for configuring the device and
programming input and output procedures. This
programming tool can also be used for educational
purposes where a low cost solution is often
appreciated.

By integrating a fast digital to analog module into
the above architecture we allow for flexibility in
automated measurements with alternating signals.
The DAC module is based on XR2206 waveform
generator and can be adjusted with external
capacitors to produce a maximum frequency of
50KHz, keeping excitation signals within the limits
of the Niquist theorem. A typical frequency response
can thus be measured automatically.

A number of variations of the above architecture
are possible. A more powerful microcontroller with
higher RAM capacity can be used to log samples
into RAM registers before transmitting them to the
computer. A USB interface to the computer can be
supported by controllers like PIC16C745/6 (Ref. 10,
11), but a handler to the USB interface is not widely
available and has to be designed from scratch.
Visual languages with access to the Windows API
interface can offer some solution (Ref. 12), however
graphic languages like LabVIEW are short of ready
drivers for USB interfacing.

John A. Kalomiros / Computing, 2006, Vol. 5, Issue 2, 43-49

 49

6. REFERENCES

[1] Tran Tien Lang, Electronique des systemes des

measures, Masson, 1997.
[2] Kevin James, PC Interfacing and Data

Acquisition, Newnes, 2000.
[3] http://www.ni.com/dataacquisition/
[4] http://www.ni.com/dataacquisition/usb/
[5] Jan Axelson, Parallel Port Complete, Lakeview

Research, Madison, 2000.
[6] Paul Bergsman, Controlling the world with your

PC, Hightext Publications, 1994.
[7] Microchip PIC16F87x Data Sheets, Microchip

Technology Inc. 1999.
[8] Craig Peacock, Interfacing the Standard parallel

port, in:
http://www.beyondlogic.org/spp/parallel.htm,
2000.

[9] See for example: John Essick, Advanced
LabVIEW Labs, Prentice Hall, 1999.

[10] Microchip PIC16C745/6 Data Sheets,
Microchip Technology Inc. 2001.

[11] John Hyde, USB design by example, Intel,
Wiley, 1999.

[12] Jan Axelson, USB Complete, Lakeview
Reasearch, 1999.

John A. Kalomiros received
the degree of Physics at the
Aristotle University of
Thessaloniki in 1984 and a
Masters degree in Electronics
in 1987. His doctoral thesis is
on characterization of mate-
rials for microelectronic
devices. His recent research
interests include

microcontrollers and digital systems design with
applications in Robotics. He is also working on
systems for digital measurements and instru-
mentation. He teaches electronics and related
subjects at the Technical and Educational Institute of
Serres, Greece.

