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Abstract: The design of a simple and low cost 10-bit data acquisition system is presented which makes use of the 
peripherals of a PIC16F877 microcontroller, interfacing with a personal computer using the extended capabilities of 
the parallel port. The system is integrated with a visual programming tool based on LabVIEW data acquisition 
software, which provides design flexibility and real time signal processing capabilities. An optimum assembly code for 
the PIC microcontroller allows for a free-running mean sampling rate of 100KSps on a Pentium PC running Windows 
XP OS. This system can be an example of a low cost integrated approach for data acquisition that includes a 
microcontroller, a personal computer and visual measurement software. The system can be the basis of a A/D interface 
for many measurement applications and can also be seen as an educational paradigm in itself. An effective and fast 
DAC solution is also presented in full integration with the microcontroller and the computer parallel port. 
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1. INTRODUCTION 
Computer based data acquisition systems have 

become very common during the last fifteen years 
and prevail in many measurement applications that 
follow a low cost modular design [1,2]. They usually 
consist of a PCI or PXI computer card with a 
number of configurable analog input and output 
channels, digital inputs and outputs as well as inputs 
for triggering and timing signals [3]. The system is 
characterized by the total number of channels, its bit 
analysis and sampling rate. A basic twelve bits of 
analysis with a sampling rate of about 150 KSps 
may rise to a total cost in the range of several 
hundred Euros. The system is flexible but still its use 
requires some programming skills and a basic 
understanding of the architectural details in terms of 
configurable registers and memory mapping. A 
particular drawback of such a design is the need of a 
dedicated computer system and limited portability. 

An alternative to the above are devices external 
to the computer system, connected to the computer 
through a serial interface, like a COM port or USB 
port. RS232 devices have a widespread use, 
especially in educationally oriented applications, in 
various types of “Computer Based Laboratories” or 
CBLs. They usually function as data loggers rather 
than real time data acquisition systems, due to the 

limited baud rate, but can also monitor slowly 
varying signals in real time. USB 2.0 devices 
support high transfer rates and can compete with 
boards based on PCI bus but they cost twice as much 
as the later [4]. However, along with IEEE 1394 
(firewire) external data acquisition devices they 
constitute a smart and flexible if expensive solution, 
able to cover most future needs. 

The parallel interface was traditionally used as a 
printer or scanner port before it was supplanted by 
the USB port. It is still located in most desktop 
computer motherboards and provides an easy, fast 
and well documented interface for data interchange 
with all kinds of custom devices. The initial printer 
port evolved into a bi-directional Extended 
Capabilities Port and supports an enhanced protocol 
for data transfer that can cover a wide range of needs 
[5]. It can be addressed in a straightforward manner 
through globally addressable registers and can even 
be served by an interrupt request [6]. It presents the 
easiest way for the design of custom peripherals, 
since it does not require the use of a controller, like a 
UART or a USB peripheral controller. Moreover it 
is supported by driver software designed for all PC 
based operating systems, so it can be addressed from 
within most visual programming languages, like 
Visual Basic, Visual C or LabVIEW. 
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Inspite of the above flexibility, the parallel port 
has not been used often in order to support data 
acquisition devices, because of its legacy use as a 
dedicated printer port. However it might present an 
interesting alternative now that USB ports cover 
most peripheral interfacing needs.  

Another aspect of data acquisition systems is 
measurement software. National Instruments (NI) 
provides LabVIEW, a software for the development 
of data acquisition applications and data processing, 
while Mathworks also provides a toolbox for data 
acquisition along with Matlab, their software for 
engineering mathematics and simulation. Both tools 
are powerful, while NI’s software is better suited for 
easy interfacing and measurement processing, as it 
incorporates a large number of ready device drivers 
within a graphic interface. A number of other tools, 
based on visual programming languages, also 
present interesting alternatives. 

Finally, microcontrollers play today an important 
role in all kinds of automated control systems and 
come equipped with many peripherals, like analog to 
digital converters, UARTS, PIOs, I2C interfaces or 
even USB controllers. Although they are limited to 
executing code following the von-Neumann serial 
philosophy, they can run at clock speeds that support 
fast applications, like DSP. It is only inevitable that 
microcontrollers are used in data acquisition 
applications and computer interfacing as well. 

In this paper we present the design of a data 
acquisition system that makes use of the peripheral 
capabilities of a PIC16F877 microcontroller driven 
by a clock frequency of 20MHz.  In this system we 
integrate the microcontroller with the ECP parallel 
port and with LabVIEW software. As a result we 
produce a very low cost A/D computer interface that 
is capable to cover a wide range of applications in 
the field of digital measurements. The system can be 
enhanced by upgrading the microcontroller with a 
higher member of the Microchip family but 
performance is limited by the data exchange 
capabilities of the parallel port in ECP mode. 
Depending on the computer motherboard the system 
can provide a mean “free-running” sampling rate of 
100KSps on a Pentium III and can support more 
than 150Ksps for faster systems. The analysis is 
limited to 10 bits by the PIC16F877 microcontroller 
A/D module. We also present a DAC module 
integrated with the microcontroller, able to produce 
waveforms in the acoustic region of frequencies.  

The system serves as an example of simple 
architecture that makes use of up-to-date off the 
shelf software solutions and easy to use interfacing 
in order to achieve acceptable data rates at a fraction 
of the cost. 
 
 

2. ARCHITECTURE OF THE ENHANCED 
PARALLEL PORT 

The design that follows is based on the extended 
capabilities of the enhanced parallel port which is 
standard equipment for most motherboards of 
desktop PCs. The extended capabilities are activated 
through the BIOS settings of the computer, by 
selecting  ECP and EPP1.9 from  within  the 
Integrated Peripherals menu. Fig. 1 presents the 
basic architecture and the memory mapped registers 
corresponding to each group of pins. Also, it shows 
the input or output use of each register. In addition 
to this layout one should also mention the ECR 
register (Extended Control Register) found in Base 
address + 402h. Base address in the above 
architecture usually is address 378h for LPT1 or can 
be retrieved for all LPTs by reading the BIOS 
addresses 0000:0408 through 0000:040E. 
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Fig. 1 – Architecture of the parallel port 

 
In the DAQ interface presented in this paper the 

DATA register is used in bi-directional mode, for 
data input and output. As discussed in the next 
paragraph, this register reads the high byte of the 
A/D conversion as it is transmitted from the PIC port 
labeled D (PORTD). In reverse, DATA register 
outputs data that are read from PORTD in input 
mode and are loaded to programmable PIC registers. 
The STATUS register of the parallel port is used for 
input and receives the two least significant bits of 
the A/D conversion. Bit b3 of the STATUS register 
also receives handshaking signals from the 
microcontroller. The CONTROL register of the 
parallel port is used for output of control signals. 
These signals include handshaking to PIC using 
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STROBE pin, and mode select information that 
controls the execution flow of the PIC code.  

When digital-to-analog mode is selected, DATA 
register is used to transfer a byte to a register in 
order to control DAC frequency. An alternating 
analog signal is then produced at the output of a 
XR2206 integrated circuit, as explained in the 
following paragraph. 
 

3. HARDWARE DESIGN 
Fig. 2 shows the basic hardware design of the 

A/D interface. Architectural details for this 
microcontroller can be found in Ref. 7. PORTA of 
the microcontroller is used mainly for analog data 
input (pins 2, 3, 7), but it can be configured into any 
combination of analog or digital I/O. The TOCKI 
input (pin 6) receives handshaking digital input from 
the STROBE bit of the parallel port. PORTD serves 
as the main channel of communication for data 
exchange with the computer and is connected to the 
bi-directional DATA register of the parallel port. As 
mentioned, this channel transmits the high byte of 
the left-justified A/D conversion result or receives 
control data from the computer and adjusts the 
operating mode of the microcontroller by writing to 
the appropriate PIC registers. PORTB plays a 

multiple role. Bits RB6 and RB7 transmit the two 
least significant bits of the 10-bit result of the A/D 
conversion to the computer. These bits are read by 
the STATUS register of the parallel port (b4 and b5), 
which is used for input to the PC. Bits RB1 and RB2 
of PORTB receive data from bits b2 and b3 of the 
CONTROL register of the parallel port. As 
mentioned, these signals are used for assembly code 
flow control. Accurate transfer of data from the 
microcontroller to the computer and vice versa is 
attained by applying a simple custom handshaking 
protocol. When the microcontroller has a data set 
ready for transmission it sets RB3 of  PORTB which 
is polled by b3 of the STATUS register of the 
computer parallel port. When the computer asks to 
transfer data to the microcontroller it sends an active 
low STROBE signal to the TOCKI bit (RA4 or pin 
6) of the microcontroller. When expecting data the 
microcontroller is put in a waiting state and polls the 
TOCKI bit. Generally, during a bulk transfer of data 
between the two devices, the one is always polling 
for a handshake signal and receives data upon 
exiting the polling state, while the other prepares and 
transmits the data set and pulls the handshake line in 
order to end the procedure. 
 

 
 

Fig. 2 - Basic hardware design 
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Fig. 3 shows the design of the digital-to-analog 
(DAC) module. It is based on a XR2206 monolithic 
waveform generator, which is capable to produce 
high accuracy sine, pulse, sawtooth or triangular 
signals. The frequency range of the circuit can be 
selected externally, by adjusting the value of an 
external capacitor connected between pins 5 and 6, 
while a micrometric variation of the output 
frequency can be achieved by varying the voltage 
applied at pin 7. This voltage is produced by a 
digital to analog DAC0832 R-2R circuit driven by 
PORTC of the microcontroller. 

The frequency control byte is transmitted through 
the parallel port and is read from PORTD of the 
microcontroller when appropriate mode is selected 
through CONTROL register bits b2 and b3 (pins 16 
and 17 of the parallel port connector - see Fig. 2). 
Upon DAC mode selection (see Table 1) an 
appropriate PIC subroutine is executed and the 
frequency control byte is read and latched on 
PORTC.  

Capacitor values are chosen through relays 
(relay1 and 2 in Fig. 3) driven by digital output RB4, 
RB5 of the microcontroller (pins 37, 38).  

RB4 and RB5 combination is produced with respect 
to mode select values of input bits RB1 and RB2 of 
PORTB (see Fig. 2). Table 1 shows mode selection 
data as transmitted by CONTROL register and read 
by RB1 and RB2. 
 

Table 1. Function mode selection  
RB1 RB2 Function Capacitor selection, 

driven by RB4, RB5  
0 0 ADC irrelevant 
1 0 DAC 100nF (default) 
0 1 DAC 10nF 
1 1 DAC 1nF 

 
4. DESIGN OF SOFTWARE INTERFACE 

The software needed for this application is 
divided in code written for the PIC microcontroller 
and code written for the host computer in the form of 
user interface and device drivers. 
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Fig. 3 – DAC module integrated with the microcontroller and the ECP parallel port 
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Device drivers and user interface are produced 
using LabVIEW 7.1 development system software, 
copyrighted by National Instruments Corporation. 
We used a modular approach and designed a number 
of hierarchical blocks each one controlling a 
particular function [9]. In this way one can produce 
any sequential procedure of the basic functions by 
simply rearranging the given blocks in due order and 
adding appropriate processing functions, time 
delays, graphs and controls wherever needed. 

The basic flow chart for device initialization and 
data acquisition is as follows: 
1. We select ADC or DAC mode. 
2. We read ECR register found in address 

“Base+402h”  and set b5  in order to select  Byte 
mode for the EPP parallel port (see Ref. 8). 

3. We read CONTROL register of the parallel port 
in location 37Ah and we clear b5 in order to set 
DATA register of the bi-directional parallel port 
to output mode. 

4. We program ADCON0 register of the 
PIC16F877 microcontroller by transmitting the 
byte “01000001” through the DATA register of 
the parallel port. This code turns on the A/D 
module of the microcontroller and sets the 
conversion speed to its maximum value (in this 
way we actually drive the PIC by overclocking, 
but it works fine).   

5. We reset the microcontroller by sending a zero 
bit to MCLR. For this purpose we pull down 
AUTOFEED (b1 of the CONTROL register), as 
shown in Fig. 3.  

6. We pull down SROBE bit of the parallel port 
CONTROL register, initiating handshaking. The 

microcontroller reads PORTD and writes 
ADCON0. 

7. We set b5 of CONTROL register in order to set 
DATA register of the parallel port into input mode. 

There follows the flow chart for bulk data 
acquisition. In this subroutine a large set of sampled 
data is transferred to the computer following A/D 
conversions. The following code is included into a 
FOR loop: 
1. We set STROBE bit. 
2. We poll b3 of microcontroller PORTB in a   

WHILE loop, waiting for the end of A/D 
conversion. 

3. Upon finishing the conversion the 
microcontroller places the high byte of the 10 bit 
conversion on PORTD. The two lower bits are 
placed on RB6 and RB7 of PORTB. The 
microcontroller code sets b3 of PORTB and is 
put into a waiting state, polling the TOCKI bit. 

4. When the WHILE loop ends, the high byte of 
the A/D conversion is read through DATA 
register, while the two lower bits are read 
through STATUS register (see also paragraph 3). 

5. When the host computer finishes reading the 
conversion bytes it pulls down the STROBE bit 
of the CONTROL register.  

6. The microcontroller exits the waiting state and 
starts a new conversion. 

7. The host computer executes next turn of the 
FOR loop. It waits in the WHILE loop polling 
RB3 (b3 of PORTB). 

8. The procedure goes on until all scheduled 
conversions are transferred.  

 

 
 

Fig. 4 – User interface made with LabVIEW software 
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From the microcontroller side, we first initialize 
the ports and set them appropriately for input or for 
output. Bits b0, b1, b2 of PORTB are set as inputs, 
while b3, b4, b5, b6, b7 are set as outputs. 

We then read bits RB1 and RB2 and set the 
function mode accordingly. We either execute a 
“acquisition” subroutine, where we setup a 
conversion and output data according to step 3 of the 
above algorithm or execute a “analog_out” subroutine 
where the microcontroller receives a frequency 
control byte and outputs data according to paragraph 
3. We switch the function of PORTD to input or 
output according to I/O needs. Register ADCON0 is 
configured with data transmitted from the host 
computer and so can be configured ADCON1 if we 
need to have control over channel selection. 

Fig. 4 shows the front panel of a virtual 
instrument designed with LabVIEW software for 
data acquisition. The corresponding block diagram 
with graphic code is shown in Fig. 5. In the same 
manner one can add to this modular design by 
adding hierarchical blocks for particular needs. Such 
a simple and straightforward programming approach 
is also suitable for the classroom. 
 

 
 

  
Fig. 5 - Sequential block diagram constructed with 

hierarchical blocks 
 

5. CONCLUSIONS 
In this article a very compact and low-cost DAQ 

architecture was presented in the form of an external 
device interfacing with the computer by means of 
the ECP parallel port. This system is an example of 
an effective integration between microcontroller, 
computer interface and software design. The 
microcontroller runs at 20MHz and has a command 
execution cycle of 250 ns.  By allowing 
overclocking of the A/D module of the 
microcontroller we attain a 10-bit conversion time of 
approximately 8µs. Sampling frequency was 
measured to be up to 150 KHz on a Pentium IV 
platform and it maintains a mean “free-running” 
value of about 100KHz on slower systems. Free-
running frequency is defined as the full speed 
frequency that is allowed by the custom protocol 
described in paragraph 3 of this article. Sampling 
frequency can be controlled by executing delay 
subroutines between samples. 

User interface and system drivers were designed 
using LabVIEW software that allows addressing the 
registers of the enhanced parallel port from within 
Windows XP OS. Graphical programming in 
LabVIEW can easily be condensed into hierarchical 
blocks that only need to be connected with 
appropriate input controls and output graphs or 
indicators. In this way we construct a very flexible 
platform for configuring the device and 
programming input and output procedures. This 
programming tool can also be used for educational 
purposes where a low cost solution is often 
appreciated. 

By integrating a fast digital to analog module into  
the above architecture we allow for flexibility in 
automated measurements with alternating signals. 
The DAC module is based on XR2206 waveform 
generator and can be adjusted with external 
capacitors to produce a maximum frequency of 
50KHz, keeping excitation signals within the limits 
of the Niquist theorem. A typical frequency response 
can thus be measured automatically.  

A number of variations of the above architecture 
are possible.  A more powerful microcontroller with 
higher RAM capacity can be used to log samples 
into RAM registers before transmitting them to the 
computer. A USB interface to the computer can be 
supported by controllers like PIC16C745/6 (Ref. 10, 
11), but a handler to the USB interface is not widely 
available and has to be designed from scratch. 
Visual languages with access to the Windows API 
interface can offer some solution (Ref. 12), however 
graphic languages like LabVIEW are short of ready 
drivers for USB interfacing. 
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