
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2010, Article ID 480208, 17 pages
doi:10.1155/2010/480208

Research Article

Robotic Mapping and Localization with Real-Time Dense Stereo
on Reconfigurable Hardware

John Kalomiros1 and John Lygouras2

1 Department of Informatics and Communications, Technological Educational Institute of Serres, Terma Magnisias, 62124 Serres, Greece
2 Section of Electronics and Information Systems Technology, Department of Electrical Engineering & Computer Engineering,
School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Correspondence should be addressed to John Kalomiros, ikalom@teiser.gr

Received 1 March 2010; Revised 20 July 2010; Accepted 20 November 2010

Academic Editor: Viktor K. Prasanna

Copyright © 2010 J. Kalomiros and J. Lygouras. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A reconfigurable architecture for dense stereo is presented as an observation framework for a real-time implementation of the
simultaneous localization and mapping problem in robotics. The reconfigurable sensor detects point features from stereo image
pairs to use at the measurement update stage of the procedure. The main hardware blocks are a dense depth stereo accelerator, a
left and right image corner detector, and a stage performing left-right consistency check. For the stereo-processor stage, we have
implemented and tested a global-matching component based on a maximum-likelihood dynamic programming technique. The
system includes a Nios II processor for data control and a USB 2.0 interface for host communication. Remote control is used to
guide a vehicle equipped with a stereo head in an indoor environment. The FastSLAM Bayesian algorithm is applied in order to
track and update observations and the robot path in real time. The system is assessed using real scene depth detection and public
reference data sets. The paper also reports resource usage and a comparison of mapping and localization results with ground truth.

1. Introduction

Vision-based robotic localization and mapping is one of
the most active research areas in mobile robotics. Next
generation intelligent vehicles technology depends heavily on
the successful implementation of vision-based systems for
navigation, real-time obstacle detection, and path planning
[1]. In particular, the simultaneous localization and mapping
(SLAM) problem has been given immense attention in recent
years, since it holds the key to robust navigation in unknown
environments. SLAM is a class of stochastic algorithms
that address the problem of estimating concurrently the
robot’s path and a map of the surrounding environment [2].
These algorithms are based on a nonlinear model for robot
dynamics and on a landmark observation model derived
from the particular nature of the sensor used for data
gathering.

Feature extraction is a prerequisite for robot mapping
and localization, which in turn is a central problem for
the navigation of autonomous vehicles [3]. Active sensors

like sonars and laser range finders are commonly used
for the purpose of feature extraction for localization and
mapping [4]. They are effective in static, low density, and
low noise environments, but are also expensive, heavy, and
prone to environmental interference. Passive systems, like
vision systems, are much less sensitive to environmental
interference. Recently attention has been given to monocular
or stereo-vision systems, and methods have been proposed to
extract reliable features from image data [5]. Various vision-
based features have been used in the literature. Such are Shi-
Tomasi features [6], SIFT descriptors [7], edge segments [8],
Harris corners [9], and so forth. Visual feature extraction
and tracking in real-time is computationally demanding,
particularly since the data rates coming from camera are
much higher than those from other sensors.

Stereo-vision provides a solid framework for the extrac-
tion of 3D structure from image data. Finding the corre-
spondences between left and right image frames allows depth
computation for scene points. Solving the correspondence
problem is not trivial, however, since occlusion, specularities

2 International Journal of Reconfigurable Computing

Input
stage

Image 1

Image 2
Stereo accelerator

SAD/MLDP
Disparities

3× 3
window
buffer

Corner
detector

left

Thinner
left

Features
left

Left-right
consistency

check

Consistent
features

3× 3
window
buffer

Corner
detector

right

Thinner
right Features

right

Figure 1: Block diagram of the point-feature detector.

or lack of texture can lead to wrong matches. The deriva-
tion of dense disparity maps from stereo-pairs is again a
very demanding computational problem, since it requires
extensive searching and optimization along scanlines [11].
A taxonomy and evaluation of different correspondence
methods is given in [12]. Cost aggregation methods for real-
time stereo matching are evaluated in [13].

Vision-based feature extraction for robotic mapping
and localization is a very intensive computational pro-
cedure and is known as the main source of delay in
visual SLAM. Moreover, stereo-assisted feature extraction
has high-computational demands, especially for global stereo
matching. Field programmable gate arrays represent a flex-
ible and efficient solution for accelerating stereo matching
computations and other complex image processing tasks.
Their fine-grain structure of small logic elements allows
parallelism combined with high processing speeds. They also
present an advantage over Application Specific Integrated
Circuits (ASICs) because they are reprogrammable and
much cheaper for prototyping.

In this paper, a real-time point-feature extraction tech-
nique based on stereo vision is proposed and is implemented
in reconfigurable hardware. Left and right image information
is input to the system as a stream of 8-bit gray-scale pixels
and is processed by several hardware stages integrated in a
system-on-a-programmable-chip. The first stage is a stereo-
processor able to produce dense depth in the form of 8-bit
disparities in parallel with input data. A global matching
maximum-likelihood algorithm is implemented and its
suitability for consistent feature extraction is tested. The
algorithm provides optimized disparity computation across
scanlines and addresses the problem of depth extraction at
occlusion boundaries but has considerable computational
cost. Other stages are left and right image corner detectors
and thinning stages resulting in a pair of binary images with
well-localized point features. The final stage performs a left-
right consistency check, taking into account the disparity
values produced by the stereo stage. Point-features surviving
the check are output from the final stage. The integrated
system features also a Nios II processor for data control,
an external memory interface, DMA functions, and a USB
2.0 controller for communication with a host computer.
An introductory description of this implementation was

given in [14] and here the system is evaluated and tested
extensively.

The above system is adapted to a simple mobile vehicle
and is used as the sensor part in a simultaneous localization
and mapping experiment. On the host part, an application
receives the stream of feature positions with their respective
disparities. A FastSLAM algorithm is used to track and
optimize the vehicle path and the map feature locations.

The main contribution of this paper is twofold. It
presents an original integrated sensor producing landmark
measurements, based on computationally demanding dense
stereo techniques. Second, the system is tested and assessed
in terms of accuracy and real-time performance in a state-of-
the-art Bayesian algorithm for simultaneous localization and
mapping. The presented system can be used as a framework
to develop more sophisticated dense depth solutions to
vision-based robotic navigation.

The rest of the paper is organized as follows. In Section 2,
the overall system is outlined in a block diagram. In Section 3
the stereo processing stage, the corner detection and the stage
for left-right consistency check are presented. In Section 4
the system is evaluated in terms of frame rates and hardware
resource usage. In Section 5, the presented hardware is used
as the measurement stage for a 3D FastSLAM localization
and mapping experiment. Section 6 compares the results
with similar efforts presented in the literature and Section 7
concludes the paper.

2. The Overall Feature Detection System

Figure 1 shows a block diagram of the overall system. A
stereo head is developed in the laboratory with two parallel
cameras carefully adjusted in order to produce rectified
image pairs. First, a dense depth map is produced by the
stereo accelerator stage. Left and right image pixel streams
are processed in parallel by the stereo processor. The stereo
processor finds the correspondences between left and right
image pixels and produces the disparities d = uL − uR,
where uL and uR are pixel coordinates on a scanline. It can
produce 16, 32, 49, or even more levels of disparity, based on
the same principles but making use of additional hardware
resources. The stereo stage can implement any method of
local correlation or global scanline optimization provided

International Journal of Reconfigurable Computing 3

C2H

C2G

C2F

C2E

C2D

C2C

C2B

C2A

C19

C18

C17

C16

C15

C14

C13

C12

C11

C29

C28

C27

C26

C25

C24

C23

C22

C21

C37

C36

C35

C34

C33

C32

C45

C44

C43

C55

C54

C53

C00 C1A C1B C1C
Left scanline

R
ig

h
t

sc
an

lin
e

Figure 2: Cost-plane matrix and a diagonal slice for parallel computations.

that they produce a synchronized output in parallel with the
input data streams. In our stereo-assisted feature extraction
scheme the stereo correspondence accelerator implements
a demanding maximum-likelihood optimization algorithm
based on dynamic programming (DP).

In the feature extraction stage, corner detectors imple-
ment a simple edge detection principle based on convolution
with 3× 3 Prewitt horizontal and vertical masks. In principle,
any edge detection method is applicable; however the Prewitt
masks are hardware friendly since they perform convolution
computations only with adders and subtractors. The same
3× 3 window used for correlation in the stereo stage can be
used for the purpose of convolution in the corner detection
stage. A thresholding scheme is applied in order to produce
binary horizontal and vertical edge images from each input
image. Corners are produced by simply performing a binary
AND operation between horizontal and vertical edges.
Thinning stages apply a thinning algorithm based again on
convolution with Prewitt masks and result in a well-defined
point-feature at each image corner. In the final stage the
consistency of point-features in the left and right image
frame is tested by comparing their horizontal displacement
with the disparity values produced by the stereo stage.
Only features surviving the test are transmitted to the host

application and are processed in the 3D map reconstruction
phase.

3. Analysis and Design of
the Embedded System Stages

3.1. Hardware Design of the DP Stereo Accelerator. Dense
depth is extracted by matching left and right rectified
image pairs captured by the stereo head. In this paper
a semiglobal matching algorithm is used, based on a
dynamic programming optimization method. The algorithm
is computationally demanding and difficult to implement in
real-time without acceleration. As pointed out by Cox et al.
[15] and Brown et al. [11] the computational complexity
of an algorithm matching all pixels in a stereo pair using
dynamic programming is O(N2 × M), where N, M are the
horizontal and vertical image dimensions.

Dynamic programming for stereo is mathematically and
computationally more complex than local correlation meth-
ods, since stereo correspondence is derived as a globally opti-
mum solution for the whole scan line [16]. The algorithm
used in this paper is a method for maximizing likelihood,
which is equivalent to minimizing a cost function [15]. The

4 International Journal of Reconfigurable Computing

Initial
states

Next states
after one iteration

C2G

C2F

C2E

C2D

C2C

C2B

C2A

C00

C1A

+occl
+s

+occ
l

+occl
+s

+occ
l

+occl
+s

+occ
l

+occl
+s

+occ
l

C2G

C2F

C2E

C2D

C2C

C2B

C2A

C11

C1A

+s

+occ
l

+occl
+s

+occ
l

+occl
+s

+occ
l

+occl
+s

+occ
l

+occl
+s

+occ
l

C2G

C2E

C2C

C12

C21

C2G + 2occl

C1A + 2occl

Figure 3: Successive cost-state computation with feedback, using an example nine-state machine, for the cost-plane of Figure 2.

algorithm is developed in two phases, namely, the cost-
plane building phase and the backtracking phase. The cost-
plane is computed as a two-dimensional matrix of minimum
costs, one cost-value for each possible correspondence Ii ↔
I j between left and right image intensity values, along a
scan line. One always proceeds from left to right, as a
result of the ordering constraint. This procedure is shown
in Figure 2, where each point of the two-dimensional cost
function is derived as the minimum transition cost from the
three neighboring cost values. Transition costs result from
previous costs, adding a matching or occlusion cost, si j or
occl, according to the following recursive procedure:

C
(
i, j
) = min

{
C
(
i− 1, j − 1

)
+ si j , C

(
i− 1, j

)
+ occl

C
(
i, j − 1

)
+ occl

}
.

(1)

In the above equations, the matching cost si j is min-
imized when there is a match between left and right
intensities. We used the following dissimilarity measure:

si j =
(
Il(i)− Ir

(
j
))2

σ2
, (2)

where σ represents the standard deviation of pixel noise.
Typical values are σ = 0.05 – 0.12 for image intensities in the
range [0, 1]. In our implementation, we calculate si j within

a 3× 3 window applied in both images. The occlusion cost
occl is the cost of pixel j in the right scanline being skipped
in the search for a matching pixel for i and in our tests takes
a value occl = 0.2.

The cost-matrix computation is a recursive procedure in
the sense that for each new cost C(i, j) the preceding costs
on the same raw and column are needed, according to (1).
In turn, previous costs need their precedent costs, rendering
the parallel computation of costs intractable. In order to
parallelize the cost-matrix computation in hardware, we
design a variation of the DP algorithm, using an adequate
slice of the cost-matrix above the diagonal of the cost plane,
as shown in Figure 2. We take into account only the part of
the cost plane, where the minimum cost path is contained.
Working within this slice, along the diagonal, allows a subset
of D cost states perpendicular to the diagonal to result in
parallel from the preceding subset of cost states, in step
with the input stream of left and right image scanlines.
D represents the maximum disparity range. Figure 2 shows
a slice along the diagonal supporting, by way of example,
a maximum disparity of 9 pixels. Starting from a known
initial state (here c1A, c00, c2A, c2B, c2C , c2D, c2E, c2F , and
c2G lying on the axes), the next subset of cost states is
calculated. For this purpose, the cost states are grouped
as triads and occlusion (occl), and matching costs (si j)
are added to the previous states, as shown in Figure 3. In
this way, the processing element computes the cost of the

International Journal of Reconfigurable Computing 5

Left scanline

Right scanline

Input
pixel

buffer

Initial
states

Previous
states

Cost-plane
computation

Next states

Clocks

Min-costage
values
−1, 0, 1

Rd/wr

RAM 1

RAM 2

LIFO-MEM

Backtracking

Column
buffer

Backtracking
rules

Δd =
exit-entry

Disparities

Figure 4: Hardware system based on maximum-likelihood dynamic programming algorithm.

diagonal, vertical, and horizontal path to each adjacent point.
The minimum among the three cost values is produced by
an appropriate min-computation parallel stage. Tag values
(−1, 0, 1) are attributed to all three possible paths and the
wining tag, corresponding to the minimum cost, is stored
in RAM memory, at each point of the cost plane. As shown
in Figure 3, at each-one iteration the next subset of cost
states are calculated in two phases. The nine states shown
in circles are all the cost states needed for the next round of
computations.

In this way, it is possible to calculate all states in the slice,
up to the end of the cost-plane, using the same hardware
stage. This stage receives as input the previous costs, along
with the current left and right pixel intensities and produces
the next subset of costs, like a state machine. Pixel intensities
are used in the matching cost computation of (2).

RAM memory is implemented as M4K blocks, N posi-
tions deep, where N is the number of pixels per scanline. A
number of D RAM blocks are needed (nine in the case of the
state machine working on the cost plane of Figure 2). Each
position is 2-bit wide, since it only stores a tag value −1, 0,
or 1.

During backtracking, we compute N disparities for each
one of the N scanline pixels, in N clock cycles. Winning
tags are read from RAM memory in reverse order and are
ordered according to the columns of the cost plane, using
shift registers. At each step, we move from one column to the
next, following the optimum path, according to the retrieved
tag values and using well-defined rules [15]. At each step, the
optimum path traverses vertically a tag column by a number
of pixels equal to the change Δd of disparity at this particular
step. Starting with d = 0 at the Nth pixel, the system tallies
the disparity values down to the first pixel, adding Δd at each
step.

Figure 4 shows a block diagram of the stereo accelerator
hardware system.

3.2. The Corner Detector Stage. As mentioned above, corners
in the left and right images are formed at the cross-section
of vertical and horizontal edges. In order to produce image

gradients, we convolute the images with 3× 3 Prewitt masks.
Image areas are formed with shift lines that store streaming
input pixels. Using 3× 3 windows results in a sensitive edge
detector and at the same time keeps the required hardware
resources low. Since the Prewitt masks contain only zeros
and ones, the convolution is implemented with adders and
subtractors, as shown in Figure 5. In the inset, the Prewitt
mask for horizontal gradient is shown, along with the
respective image window where the convolution is applied.

Vertical gradient is produced with the transposed Prewitt
mask. A threshold value equal to 80 is used in order to
produce horizontal and vertical binary edges. A binary AND
operation produces thick white spots at the cross section of
horizontal and vertical edges. White spots are ones, black
areas are zeros. In 8-bit intensity terms ones are 255.

A thinning procedure is applied in the next stage,
implementing the steps of the following algorithm:

(i) Convolute a 3× 3 area of the binary corner image
with horizontal Prewitt mask M1;

(ii) Convolute the same 3× 3 area with the vertical
Prewitt mask M2;

(iii) IF the central pixel in the 3× 3 area is zero OR any of
the convolutions in steps a and b is greater than 1

(a) THEN central pixel remains zero;
(b) ELSE central pixel is 1.

The idea behind the above hardware-friendly steps is to
crop clusters of ones until only a central point remains. Point
(iii) in the above algorithm is implemented according to
Figure 6.

Finally, the consistency check is implemented by combin-
ing the disparity values produced in the stereo stage with the
point features found above. This stage is shown in Figure 7.
Stereo and corner stages work in parallel and the disparities
stream can be easily aligned with the corner image stream
by means of a delay line. Each corner feature in the left
stereo frame is compared to the corresponding pixel in the
right image frame. The corresponding feature is found by

6 International Journal of Reconfigurable Computing

1
r3 d2

2
r2 d2

3
r1 d2

4
r3

5
r2

6
r1

i7 : 0

i7 : 0

i7 : 0

i7 : 0

i7 : 0

i7 : 0

A(7 : 0)

B(7 : 0)

+R(7 : 0)

Adder1

A(7 : 0)

B(7 : 0)

+R(7 : 0)

Adder2

A(7 : 0)

B(7 : 0)

+R(7 : 0)

A(7 : 0)

B(7 : 0)

+R(7 : 0)
0

GND

A(8 : 0)

B(8 : 0)

cin

ad su

−
R(8 : 0)

Pipelined subtractor

R(8 : 0)

o-vl>

Magnitude

o7 : 0
Output

1
Out[7 : 0]

−1

−1

−1

0

0

0

1

1

1

r1 d2

r2 d2

r3 d2

r1 d1

r2 d1

r3 d1

r1

r2

r3

∣∣
∣a
∣∣
∣

Figure 5: Application of the Prewitt mask for horizontal gradient computation.

|3× 3 area ∗M2|

255

a

b
>

|3× 3 area ∗M1|

255

a

b
>

Central
pixel

φ

a

b
==

M1 =

⎡

⎢
⎢
⎣

−1
−1
−1

0
0
0

1
1
1

⎤

⎥
⎥
⎦ M2 =

⎡

⎢
⎢
⎣

−1
0
1

−1
0
1

−1
0
1

⎤

⎥
⎥
⎦

0/1 (feature
/no feature)

(0/1)

Figure 6: Implementation of the thinning step.

displacement according to the disparity value. In Figure 7 we
simply use shift taps and a multiplexer in order to perform
the above check.

3.3. System-on-A-Chip and Host Application. The system
was modeled using CAD tools like DSPBuilder by Altera
and was exported as an HDL library component, ready
for integration in a System-on-a-programmable-chip. The
embedded system was designed using SOPC Builder which
is part of Quartus II, the Altera tool for system integration.
The system is controlled by a 32-bit Nios II processor, and
includes a DDR2 external memory controller and a USB
2.0 high speed controller for communication with a host
computer. The feature detection hardware is integrated in the
form of HDL library component. A set of DMA functions
transfers data between units. The SOPC system is shown in
Figure 8 as a block diagram.

We implement the system targeting a Cyclone II DSP
board featuring a 2C35 FPGA device with total resources
33,000 logic elements and 480,000 bits of on-chip mem-
ory. On the host side, the stereo-head is connected to a
National Instruments frame-grabber and is controlled by
a LabVIEW application. The same application controls the

USB 2.0 communication with the reconfigurable hardware
part achieving a practical transfer rate greater than 60 Mbps.
The host application receives the output from the hardware
accelerator and uses feature positions and disparities as
discrete landmark measurements. These measurements are
used in the update stage of a FastSLAM simultaneous
localization and mapping algorithm, running in the host
side. This procedure is presented in Section 5.

4. Evaluation of the Hardware System

The more sophisticated stage in the system presented in the
previous section is the stereo accelerator stage. It performs a
demanding computational task and has a considerable cost
in hardware resources. Table 1 shows the typical resources
needed for a basic and more advanced implementation
of the stereo processor. Increasing the range of disparities
increases proportionally the necessary resources. Our DP-
based accelerator requires on-chip memory for the storage
of minimum cost tag values. Increasing image resolution
increases proportionally the memory needed for the storage
of tag-values per scanline. The feature detector stages includ-
ing the corner detectors and left-right consistency check can

International Journal of Reconfigurable Computing 7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30

Memory delay

1
Disparities [7 : 0]

Z−9

ena 7 : 0 4 : 0
BusConversion

set[4 : 0]

2
image right[0:0]

d

31 taps
MUX

[clock]

ena[clock]

image left[0,0]

3

1
a==
b

Comparator

1AND

1

Out bit[0:0]

n-to-1 multiplexer
Shift taps

a ==b

Figure 7: Left-right consistency check.

USB 2
controller

Host DDR2
buffer

Feature
detector

DMA DMA

Nios II
controller

Figure 8: The main components of the system-on-a-programmable chip. The block Feature detector represents the system in Figure 1.

be implemented with 4000 additional logic elements. Nios
II processor and peripheral controllers require an additional
overhead of about 7000 LEs and 160000 bits of embedded
memory. The system was implemented targeting a Cyclone
II EP2C35 FPGA device.

The implemented stereo accelerator and feature detec-
tion system is able to process 49 levels of disparity and
produce 640× 480 8-bit depth maps and point features at
clock rate. The higher possible frequency for our present
implementation is 50 MHz. This timing restriction is caused
by feedback loops, as for example in the cost-matrix
computation stage and can potentially be resolved using
appropriate hardware optimization. A pair of 640× 480
images is processed at 12.28 ms, which is equivalent to
81 frames/s or 25 Mpixels/s. The reported throughput is

high and suitable for demanding real-time applications,
like navigation or environmental mapping. Table 2 presents
timing requirements and nominal frame rates for the total
system. In practice, apart from the stereo accelerator and
feature detector throughput, the frame rate depends also on
the camera type and other system parts. For comparison, the
stereo matching procedure described in Section 3.1 has been
implemented in software and was found to process a stereo
pair with resolution 640× 480 in about 20 seconds.

The stereo processor is the heart of the system and its
performance was at first evaluated using reference stereo
images. In addition to the Tsukuba University stereo pairs,
the “cones,” “sawtooth,” “books,” “arts,” and “bowling”
images from the public Middleburry data-set [10] were
used for this evaluation. Figure 9 shows a series of ground

8 International Journal of Reconfigurable Computing

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: True disparities (upper row) and depth maps produced by the reconfigurable stereo processor (lower row), using the reference
stereo set from the Middlebury data-base [10]. From left to right: “Tsukuba,” “books,” “cones,” and “sawtooth” stereo images.

Books Art Cones Bowling Tsukuba Sawtooth
0
2
4
6
8

10
12
14
16

E
rr

or
ra

te
(%

)

Textured areas
Textureless areas

Figure 10: Error rate in terms of bad matches, produced by the
reconfigurable stereo processor, using the Middlebury data set.

Table 1: Resource utilization for system implementation.

Image
resolution

Logic elements Memory bits

Stereo processor/33
disparity levels

320× 240 10000 74048

49 disparity levels 640× 480 14700 173632

65 disparity levels 640× 480 21500 270240

Feature detector 640× 480 4,000 10,000

Nios II
processor + Cashe

— 2,000 120,000

USB 2.0
controller + EP buffer

— 2520 80,000

Other controllers — 4000 30,000

Total resources 49
disparity levels

640× 480 27220 413632

truths in comparison with the corresponding disparity maps
computed by the reconfigurable processor, based on dynamic
programming. For quantitative quality assessment, the error

Figure 11: Mobile platform with stereo-head.

Table 2: Processing speed for the feature detection system.

Image
resolution

Maximum achieved
frequency (MHz)

Maximum
throughput
(Mpps)

Frame rate (fps)

640× 480 50 25 81

metric proposed by Scharstein and Szeliski [12] was used.
This measure is based on true disparities and computes the
error rate as the percentage of pixels that differ from ground
truth by more than one disparity pixel. Figure 10 shows
the percentage of bad matches for the stereo-sets used in

International Journal of Reconfigurable Computing 9

(a) (b) (c)

(d) (e) (f)

Figure 12: (a,d) Left image of a stereo pair, (b,e) the disparity map produced by the reconfigurable stereo detector, and (c,f) corners prior
to thinning.

this evaluation. The error rate in textured and textureless
regions is examined separately. Textureless regions are image
areas where the average horizontal gradient is below a
given threshold. Occlusion boundaries are excluded from the
above evaluation. As shown in Figure 10, bad matches are in
average lower than 10%. This result confirms quantitatively
that the proposed stereo processor produces reliable depth
maps independently of image content. It also confirms that
the proposed global method implemented in hardware is
generally better than common local correlation techniques,
like normalized cross correlation or SAD, although the
later are easier to fit in specific hardware architectures. An
assessment of different stereo-matching techniques can be
found in [12].

The stereo processor was also evaluated in terms of depth
maps acquired from familiar real scenes. Although this is a
subjective measure, it can be a complementary indication of
the quality of the proposed system. The stereo head shown
in Figure 11 was used to capture and process real scenes.
Typical results are shown in Figure 12. Left captured images
are followed by depth maps produced by the proposed stereo
processor. As shown in Figure 12, depth maps produced
by the hardware stereo system are smooth and accurate
in the most part of the image. Although some streaking
effect is blurring object boundaries, the overall subjective
result is satisfactory. Figure 12 also presents the corner points
produced by the feature detector described above, prior
to thinning. Results of the last two steps (thinning and
consistency checking) are pixel-size and cannot be easily
displayed.

5. 3D Mapping Experiments

5.1. The Localization and Mapping Procedure. A calibrated
stereo head is adapted to a simple mobile vehicle, shown in
Figure 11, which can be guided indoors using remote control.
In this experimental setup, the mobile platform is tethered
and transmits images to a desktop computer. The computer
interfaces with the FPGA board through USB 2.0 high speed
port. A pair of gray-scale 8-bit video sequences is captured
at each step and dense depth disparities are produced along
with consistent features in real-time using the system-on-a-
chip presented above. The result is transmitted back in the
form of pixel stream to the host computer via the USB 2.0
interface. The output pixel array contains zeros, where no
feature is found, and the corresponding disparity value in
every place where a point feature has been established. In
the host part a measurement vector is attributed to every
feature, giving the disparity and the feature position in left
image coordinates at each time step t

zt = [d,uR, vR]T , (3)

where uR, vR are the horizontal and vertical coordinates of a
right image feature and d = uL − uR.

This measurement set is used as the observation part in
a real-time simultaneous localization and mapping exper-
iment. The vehicle is moving on a plane and the vision
system reconstructs a complex map based on point features
corresponding to 3D landmarks in the world frame.

In order to estimate vehicle motion, our algorithm
uses odometry data for translational speed while it derives

10 International Journal of Reconfigurable Computing

Table 3: Performance comparison between hardware stereo matching systems.

Reference
Method of
correspondence

Area utiliza-
tion/memory
bits

Image
resolution/max
disparity

Performance

Quality
assessment
(average bad
matches)

Technology

Present work
Dynamic program-
ming/maximum
likelihood

27220 logic
elements/413632

640× 480/49 pixels 25 Mpps/81 fps <10%

Altera Cyclone
II FPGA
board + Nios II
controller

Diaz et al. (2007)
[17]

Phase-based
13048
slices/1308672

1280× 960/29
pixels

65 Mpps/52 fps —
Custom FPGA,
Xilinx Virtex-II

Ambrosch et al.
(2009) [18]

Correlation-SAD
106658 logic
elements/425984

330× 375/120
pixels

136 fps ∼38%
FPGA, Altera
Stratix EP2S130

Darabiha et al.
(2003) [19]

Local weighted
phase correlation

∼67000 4-input
LUT/800000

360× 276/20 pixels 2.8 Mpps/30 fps <10%
Custom FPGA
board Xilinx
Virtex 2000

Liang et al. (2009)
[20]

Tile-based belief
propagation

2.5 Mgates total 640× 480/64 pixels 8.2 Mpps/27 fps — ASIC

Niitsuma and
Maruyama (2004)
[21]

Correlation-SAD
31000
slices/405504

640× 480/27 pixels 9.2 Mpps/30 fps —
Custom FPGA
Xilinx Virtex-II

Kalomiros and
Lygouras (2008)
[22]

Correlation-SAD
15000 logic
elements/196000

320× 240/32 pixels 25 Mpps/325 fps ∼26%
FPGA, Altera
Cyclone II

Wang et al. (2006)
[23]

Dynamic
programming

— 640× 480/48 pixels 1 Mpps/3 fps <10%
Graphics
processing unit

rotational speed from visual data. This combination is
proved to be robust. We find that measuring rotation by
tracking image intensity features between frames can be very
exact, while estimating translation using image data can
be prone to error. This is true especially in the regime of
high rotational speed, where image content tends to change
rapidly.

Assuming a stereo system with parallel optical axes and a
pinhole camera model, our nonlinear measurement model

ẑt = h(st, θ̂) can be written in terms of an observed
landmark’s world coordinates θ̂ = (xi, yi, zi) and camera
position and rotation st = (xC, yC, ψ)

zt =

⎡

⎢
⎢
⎢
⎣

uL − uR

uR

vR

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f b

(xi − xC) cosψ +
(
yi − yC

)
sinψ

u0 +
f
[
(xi − xC) sinψ − (yi − yC

)
cosψ − b/2]

(xi − xC) cosψ +
(
yi − yC

)
sinψ

v0 +
f (zi − zC)

(xi − xC) cosψ +
(
yi − yC

)
sinψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4)

In the above equations, f is the camera focal length, b
is the baseline of the stereo head, and (u0, v0) is the central
image pixel. The reference frame of the stereo head is shown
in Figure 13.

FastSLAM algorithm proposed by Montemerlo and
colleagues [24] is adapted to the case of our stereo-assisted
point feature observations captured by the hardware system.
This method is a Bayesian algorithm for the estimation
of the robot’s path and environmental map based on
landmark observations. It approaches the localization and
mapping problem by maintaining low-dimensional Bayesian
filters instead of the multidimensional state vector and
covariance matrix of the majority of SLAM approaches. Low-
dimensionality reduces computational complexity and it is a
prerequisite for real-time implementation of localization and
mapping in the case of large 3D maps that contain thousands
or millions of landmarks. FastSLAM factorizes a posterior
over maps and robot paths

p
(
st,Θ | zt,ut,nt) = p

(
st | zt,ut,nt)

N∏

n=1

p
(
θn | st, zt,ut,nt

)
,

(5)

where st is the robot’s path until time t, which is the set of
all positions {st}. Θ is the map which consists of the mean
position and the covariance of all landmarks. zt is the set of
observed features {zt} from time 0 until time t, where the
measurement zt at each time step is given by (3). nt is the set
of correspondences between observed features zt and stored
landmarks θt in the map. The history of control parameters is
represented by ut . Superscripts denote the whole set of data
until time t, while subscripts denote data values at a given
time step.

The above factorization, first developed by Murphy
[25], is derived from the fact that given the vehicle’s path,

International Journal of Reconfigurable Computing 11

the position of every landmark can be estimated as an
independent quantity. In FastSLAM, the distribution for the
robot posterior p(st | nt, zt, ut) in (5) is estimated using
a particle filter, and the remaining N conditional landmark
posteriors p(θn | st, zt, ut, nt) are estimated using Extended
Kalman Filters (EKF). Each particle m in the particle filter
contains a robot path st and N independent EKFs, each one
tracking a single landmark position [26].

In order to estimate the map feature positions and the
vehicle’s path according to the posterior (5) we implement
the steps summarized below.

(1) Obtain the controls ut for the last step and sample
a new vehicle pose for each particle. This sampling step is
performed using the vehicle’s motion model and represents
the particle filter’s proposal distribution. In our implementa-
tion, vehicle controls ut represent translational speed Δs/Δt
which is derived from odometry and rotational speed Δψ/Δt
which is derived by minimizing absolute intensity differences
between successive video frames.

(2) A new set of measurements is captured according to
(3) and the resulting point features are associated to previous
measurements in the map. Data association nt is chosen by
calculating the minimum Mahalanobis distance between the
measured and stored landmarks

n̂t = arg min
nt

{(
zt − ẑn,t

)T
Z−1
n,t

(
zt − ẑn,t

)}
, (6)

where zt is the current measurement and ẑn,t is the mea-
surement prediction of the nth landmark stored in the map
Θ. The prediction of measurements for stored landmarks
is performed by the measurement model (4). Zn,t is the
measurement innovation covariance for the nth landmark at
time step t, given in the context of the EKF by

Zn,t = Hθnt P
[m]
nt ,t−1H

T
θnt

+ Rt, (7)

where Rt is the measurement error covariance matrix and
P[m]
nt ,t−1 is the error covariance for the nth landmark in the

mth particle. Hθnt is the observation matrix, calculated as
the Jacobian of the measurement model, with respect to
landmark coordinates

ẑt = h
(
s[m]
t , θ̂nt ,t−1

)
, (8)

Hθnt = ∇θnt h
(
st , θnt

)
. (9)

Equation (8) gives the measurement prediction according
to the robot path and map in the mth particle and is given
analytically by (4). Hθnt is calculated from (4) differentiating

with respect to xi, yi, zi:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂(uL − uR)
∂xi

∂(uL − uR)
∂yi

∂(uL − uR)
∂zi

∂uR

∂xi

∂uR

∂yi

∂uR

∂zi

∂vR

∂xi

∂vR

∂yi

∂vR

∂zi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− f b cosψ
X2

− f b sinψ
X2

0

f
(
yi − yC + (b/2) cosψ

)

X2

− f (xi − xC − (b/2) sinψ
)

X2
0

− f (zi − zC) cosψ
X2

− f (zi − zC) sinψ
X2

f

X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(10)

where X = (xi − xC) cosψ + (yi − yC) sinψ.
(3) There follows the update stage of the landmarks’

EKFs, according to the update equations of the EKF theory
[27]. Updating the filter produces the posterior at time t from
the one at time t − 1. Features with null correspondences
are initialized in terms of their mean and covariance and are
inserted in each particle as new landmarks.

Steps (2) and (3) are repeated for all features captured in
a frame at each time step t.

(4) After processing all measurements in a given stereo
pair, each particle m in the current generation of particles is
weighted according to the probability of the current observa-
tion, conditioned on the robot path. In our implementation,
this is equal to the probability M of all measurements at time
t, and can be defined in terms of log-likelihoods as

logM =
∑

i

log p
(
zt,i | st,[m], zt−1,ut,nt

)

=
∑

i

−1
2

min
{(
zt,i − ẑnt ,t

)T
Z−1
n,t

(
zt,i − ẑn,t

)}
.

(11)

The sum is taken over all observations in a given stereo pair.
Each measurement probability is equal to the probability of
the innovation zt,i − ẑnt ,t, given by the Mahalanobis distance
for the correct correspondence nt . The weight update for
particle m is calculated by

ŵm,t =
exp
(
logM

)

∑N
i=1 exp

(
logM

)wm,t−1, (12)

where N is the number of observations in the stereo pair.
Particle weights are finally normalized

wm,t = ŵm,t
∑M

m=1 ŵm,t
. (13)

(5) Particles are redistributed in order to correct the
difference between the proposal distribution and the desired
posterior (5). The resampling procedure in our implemen-
tation is performed according to the technique “Select with
replacement” [28].

The above basic operations are repeated at each time
step. At the final time step, the vehicle path and the map are

12 International Journal of Reconfigurable Computing

P

X

Y

CL CR

b

f

PL

f

PR

UL UR

Figure 13: Top-down view of two identical parallel cameras with focal length f at distance b to each other.

estimated according to the particle possessing the maximum
weight. The main steps in the above algorithm are derived
from Montemerlo’s original implementation of FastSLAM
1.0 [24, 26] while (10) represents the observation model
developed in the present paper. Equations (11), (12), and
(13) represent our preferred method for weight update in
terms of the “select with replacement” resampling algorithm.

5.2. Experimental Results. Localization and mapping exper-
iments were carried out using the observation model
described in the previous sections. The vehicle is guided
indoors by a human operator, recording features in a
5.5× 4.2 m room, following an almost circular path, and
completing one or two rounds. The speed on the direction
of motion is kept constant and equal to 0.15 m/s. A non-
zero rotational speed is maintained so that the ability of
the system to tolerate errors in odometry is tested. Multiple
rounds can test the behavior of the system at loop closure.

Figure 14(a) presents a result of mapping the room and
simultaneously localizing the vehicle, employing just one
particle in our FastSLAM implementation. In this figure,
map features are shown with blue dots at the room’s
perimeter, while the red line records the vehicle path as
estimated by the algorithm. For comparison the true path
is presented with crosses, as it was recorded on the floor
by a marker adapted on the vehicle. Perimetric lines show
the true position of the walls and furniture. The metric map
presented in Figure 14(a) is referenced to the initial position
of the vehicle at point (0,0). Figure 14(b) shows the result
after two rounds of the vehicle and utilizing five particles in
the estimation procedure. New landmarks observed during
the second round are shown in this figure with purple
dots. Figure 14(c) shows the result of the same experiment
utilizing ten particles. Figure 15 shows a 3D map of the room
obtained using two independent particles.

As is shown in these figures, acceptable maps and robot
paths can be estimated even with just one particle, while ten
particles make a slight improvement over five particles.

In spite of the low dimensionality of the measurement
vector, features produced by the stereo sensor are tracked

efficiently from frame to frame and are updated appropri-
ately, keeping the total number of features in the map rela-
tively low. At loop closure, revisited features are recognized
and updated. As shown in Figure 14(b), relatively few point
features are acknowledged as new features in the second
round, since most of them have already been observed during
the first round of the vehicle.

The accuracy of the above procedure mainly depends on
the accuracy of odometry measurements and the accuracy
of disparity measurements. The Bayesian algorithm can
partially correct odometry errors by tracking feature points
and updating the filter. However, systematic errors in pixel
disparity, especially at occlusion boundaries and at regions
without texture, can introduce erroneous observations into
the map. Although FastSLAM tends to remove wrong
associations from the map, by propagating high probability
particles in the resampling step and attenuating improbable
ones, this does not work in case the error distribution is not
Gaussian. The proposed semiglobal stereo-matching algo-
rithm implemented in hardware is proved to produce quite
accurate measurements, as compared to less sophisticated
techniques tested for the same purpose. For example, an
implementation of the Sum of Absolute Differences (SAD)
in reconfigurable hardware [22] was also tested, in the place
of the stereo processor stage of our sensor. It is found that
the map produced by the SAD stereo processor includes a
considerable number of outliers; it presents fewer consistent
features and a more dispersed cloud of points. The result of
this experiment is shown for comparison in Figure 16.

Next, the real-time processing ability of the proposed
system is explored. Figure 17 shows processing rate (steps
or iterations per second) as a function of the number of
particles in the FastSLAM filter, for the first one hundred
steps. Adequate maps were produced even with a single
particle. Using more particles has as a result the most
probable map and robot path, since each particle contains
its own vehicle path and a map conditioned on this path. In
each processing step the vehicle is promoted forward, a new
stereo pair is captured, the dense depth map is produced,
and a set of point features is extracted using the proposed

International Journal of Reconfigurable Computing 13

−5 −4 −3 −2 −1 0 1 2 3 4 5

x (m)

−2

−1

0

1

2

3

4

y
(m

)

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x (m)

−2

−1

0

1

2

3

4

y
(m

)

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x (m)

−2

−1

0

1

2

3

4

y
(m

)

(c)

Figure 14: Projection of the estimated map (blue dots) on the xy plane. Red line is the estimated vehicle path. Black lines represent the
ground truth of the objects in the map and crosses are the true vehicle positions during the first round. (a): result after one round, with
one particle in the filter. (b): five particles, two rounds. Purple dots represent new landmarks observed during the second round. (c): ten
particles.

−2
−1

0
1

2
3

4

y (m
)

−5

0

5

x (m)

0

1

2

z
(m

)

Figure 15: 3D graph of the estimated map. Two independent
particles are projected in the same map.

reconfigurable system. The measurement set is input to the
FastSLAM filter, which uses the measurements in order to
update the particle weights and the positions of the observed
landmarks. As it is shown in Figure 17, the proposed system
can process up to 12 full iterations per second with just
one particle and slows down to approximately two iterations
per second for one hundred particles. Using more than ten
particles, however, deteriorates the real-time efficiency of
the algorithm, especially when thousands of features are
gathered in the map, after several minutes of exploration.
Certainly, the notion of real-time processing here depends
on the required speed of the vehicle. Our experiments were
conducted with the controller preserving constant speed
0.15 m/s on the direction of motion. Using this standard, the
system can process at least four iterations per second without
loosing track of the observed landmarks in subsequent
camera frames. The ability to track and correlate features

14 International Journal of Reconfigurable Computing

−5 −4 −3 −2 −1 0 1 2 3 4 5

x (m)

−2

−1

0

1

2

3

4

y
(m

)

Figure 16: Result of a localization and mapping experiment in the
same premises as in Figure 14 using a SAD reconfigurable processor
in the place of the proposed dynamic programming stereo system.

0 20 40 60 80 100 120

Number of particles

0

2

4

6

8

10

12

14

P
ro

ce
ss

in
g

ra
te

(s
te

ps
/s

)

Figure 17: Processing rate in the first one hundred steps of the
vehicle, as a function of the number of particles in the FastSLAM
filter.

between frames is imperative for the correct function of the
proposed system.

On the other hand, the processing rate is a function of
the number of landmarks in the map. The map is augmented
as the vehicle moves forward gathering new measurements.
Figure 18 presents the evolution of processing time as a func-
tion of the number of processing steps, for different number
of particles in the filter. For more than ten particles, the
processing time increases superlinearly with the number of
steps, hence the processing rate decreases. Choosing between
five and ten particles, we find that the proposed system is
well within limits of real-time execution of the FastSLAM
algorithm and also keeps its processing rate almost constant.
We also note that utilizing more than ten particles in the
filter does not result in perceptible improvements in the
estimation of the robot path and environmental map.

0 100 200 300 400 500 600

Number of steps

0

50

100

150

200

250

300

350

400

450

500

T
im

e
(s

ec
on

ds
)

1 particle
5 particles
10 particles

30 particles
100 particles

Figure 18: Processing time with increasing number of steps, for
different number of particles in the filter.

Processing rate limitations in the proposed system are
due to the computational load in the software part of the
system, which implements the FastSLAM algorithm on a
desktop computer with a quad core CPU running at 2.4 GHz.
The configurable part of the system can respond well within
the rate allowed by the software part and does not add to the
computational load. This is characteristic of the significance
of specific hardware in a robotic localization and mapping
procedure. As it is noted by other researchers, the typical
time required for each iteration can measure up to several
seconds and most of this time is usually spent on the feature
extraction stage [29, 30]. Attributing feature extraction to
dedicated hardware can ease the computational load and
allow real-time response. This is particularly true for stereo-
assisted feature extraction.

The present experiments were conducted indoors with
a stereo baseline adjusted for optimum operation at several
meters. A proper autonomous vehicle and stereo head are
under development in order to conduct tests in larger or
outdoors environments.

6. Comparison with Other Systems

A meaningful comparison can be made with other stereo
sensors designed in reconfigurable hardware. A number of
real-time stereo systems were presented in the literature in
recent years. Several systems were built using FPGA devices,
like the Xilinx Virtex series or the Altera Cyclone and Stratix
families. Most such systems are based on area correlation
methods, using techniques like SAD [31, 32] and rank
transforms [33]. Ambrosch and co-authors have recently
implemented SAD-based stereo matching, rank and cencus
transform using FPGAs [18, 34]. They use 106658 logic
elements out of a Stratix EP2S130 device, and their quality
assessment yields 61.12% and 79.85% correct matches for
their SAD and census transform, respectively, while frame
rates range to several hundreds.

International Journal of Reconfigurable Computing 15

Niitsuma and Maruyama [21] described a real-time
system for the detection of moving objects, based on SAD
stereo matching. Their implementation uses a Virtex-II
FPGA and processes 30 frames per second with resolution
640× 480 pixels.

Darabiha et al. [19] and Masrani and MacLean [35]
implemented phase-based stereo in FPGAs using the equiva-
lent of 70000 logic elements and about 800 Kbits of on-chip
memory. Their system is built with Stratix S80 devices and
supports a maximum disparity range of 128 pixels. Diaz et al.
implemented a fine-grain pipeline structure for phase-based
disparity estimations. Their implementation uses a Xilinx
Virtex-II FPGA device and is able to produce one pixel of
disparity per system clock cycle [17]. A similar phase-based
implementation is also reported in [36].

Global optimization VLSI architectures are just begin-
ning to emerge. Recently, hardware-efficient algorithms for
realizing belief propagation were proposed. Belief propaga-
tion (BP) provides global optimality and good matching
performance when applied to disparity estimation. However,
it has great computational complexity and requires huge
memory and bandwidth. Cheng et al. [37] propose a tile-
based BP algorithm in order to overcome the memory and
bandwidth bottlenecks. In a related paper Liang et al. [20]
implemented the tile-based approach as well as a method
for parallel message construction on a dedicated VLSI chip.
The chip consists of 2.5 M gates and processes images in VGA
resolution with 64 pixels maximum disparities at 27 frames
per second.

The problem of mapping in hardware belief propagation
for global stereo estimation is also addressed by Park and
Jeong [38]. They implement a BP algorithm using a Xilinx
XC2vp100 FPGA chip. They process 16 disparity levels and
image resolution 256× 240 at 25 frames per second, using
9564 slices (approximately 20000 LE) and more than 10
Mbits of memory partitioned in on-chip RAM blocks and
external SRAM.

Many researchers investigate the performance of com-
modity graphics cards in accelerating stereo algorithms.
Most implementations investigate local correlation tech-
niques and achieve real-time performance [13, 39]. Global
algorithms produce good results but are computationally
intensive and not very appropriate for real-time speed. Some
attempts to parallelize dynamic programming on Graphics
Processing Units (GPUs) achieve good balance between
quality and speed and can be a good choice for PC-oriented
applications [23, 40]. However, using dedicated hardware,
like in our proposed system, is faster and more suitable for
autonomous systems equipped with vision sensors.

Table 3 presents a performance comparison between
recently published stereo matching hardware systems. Most
systems in this table are implemented using FPGAs, while
one system is prototyped as Application Specific Integrated
Circuit (ASIC) and one is a GPU implementation, shown
here for comparison. Area utilization is given in various
units, as published. We note that one logic element is
approximately equivalent to one 4-input Lookup Table
(LUT) and one slice is approximately equivalent to two 4-
input LUTs.

In Tables 1 and 2 of the present paper resource usage
and processing speed are presented for our reconfigurable
stereo system designed to assist detection of point features
for robot mapping. These data compare favorably with
implementations reported in the aforementioned literature.
The strong point of the architecture proposed in this paper
is its full parallelism, resulting in one output disparity pixel
at every clock cycle. Parallelism of the stereo algorithm
is achieved by means of a state machine allowing cost
computation of D states along the diagonal of the cost
plane in one clock cycle. The system processes 25 Mpps or
81 frames per second in full VGA resolution (640× 480).
Resolving timing restrictions can result in even higher
performance.

As shown in the previous section, the features computed
by the presented hardware can be used successfully in the
measurement part of a real-time simultaneous localization
and mapping experiment. Landmark-based SLAM with
stereo vision has also been explored by a number of other
researchers. Most of them exploit the properties of discrete
multidimensional image features, like SIFT features [41] and
Shi-Tomasi features [42]. Others track 3D line segments
[8]. They all use sparse disparity values computed at the
location of interest by some optimized software technique.
In our work, we exploit stereo acceleration provided by
reconfigurable hardware and produce high accuracy dense
depth maps using a global method of correspondence
based on dynamic programming. Dense and accurate depth
information makes it possible to extract low-dimensional
point features, using an integrated multistage system on a
chip. Processing simple features makes it possible to manage
large maps and robot paths in real-time by applying a suitable
FastSLAM algorithm, as presented in the previous sections.

7. Conclusions

In this paper, an integrated system-on-a-chip is presented for
the detection of stereo-assisted point features, suitable for
robotic mapping and localization. The system is based on
a stereo accelerator implementing a parallelized semiglobal
dynamic programming technique. Corners are extracted
from the stereo pair using horizontal and vertical edge
detectors and a hardware-friendly thinning technique. A
final hardware stage implements left-right consistency check
based on the disparity values extracted from the dense depth
map at corner pixels. The system is implemented as a system-
on-a-chip with a Nios II processor for data control and
a USB 2.0 high speed interface for communication with
a host computer. A stereo head is adapted on a mobile
platform and the reconfigurable feature detector is used
to implement the measurement part in a simultaneous
localization and mapping experiment. A state-of-the-art
FastSLAM algorithm on the host part is used to test mapping
accuracy and real-time performance of the system. The
experimental results illustrate that the system is able to
perform in real-time and produce robot paths and maps
of indoors environments. Future work will further explore
the use of dense depth to real-time vision-based robotic
navigation.

16 International Journal of Reconfigurable Computing

References

[1] W. van der Mark and D. M. Gavrila, “Real-time dense
stereo for intelligent vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 7, no. 1, pp. 38–50, 2006.

[2] S. Thrun, Robotic Mapping: A Survey. Exploring Artificial
Intelligence in the New Millenium, Morgan Kaufmann, Boston,
Mass, USA, 2002.

[3] S. Se, D. Lowe, and J. Little, “Mobile robot localization
and mapping with uncertainty using scale-invariant visual
landmarks,” International Journal of Robotics Research, vol. 21,
no. 8, pp. 735–758, 2002.

[4] M. W. M. Gamini Dissanayake, P. Newman, S. Clark, H. F.
Durrant-Whyte, and M. Csorba, “A solution to the simulta-
neous localization and map building (SLAM) problem,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 3, pp.
229–241, 2001.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: real-time single camera SLAM,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 29, no.
6, pp. 1052–1067, 2007.

[6] J. Shi and C. Tomasi, “Good features to track,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’94), pp. 593–600, June 1994.

[7] D. G. Lowe, “Object recognition from local scale-invariant
features,” in Proceedings of the 7th IEEE International Confer-
ence on Computer Vision (ICCV ’99), vol. 2, pp. 1150–1157,
Kerkyra, Greece, September 1999.

[8] M. N. Dailey and M. Parnichkun, “Landmark-based simul-
taneous localization and mapping with stereo vision,” in
Proceedings of the Asian Conference on Industrial Automation
and Robotics, 2005.

[9] C. J. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the 4th Alvey Vision Conference, pp.
147–151, Manchester, UK, 1988.

[10] May 2010, http://cat.middlebury.edu/stereo/data.html.
[11] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in

computational stereo,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003.

[12] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” Interna-
tional Journal of Computer Vision, vol. 47, no. 1–3, pp. 7–42,
2002.

[13] M. Gong, R. Yang, L. Wang, and M. Gong, “A performance
study on different cost aggregation approaches used in real-
time stereo matching,” International Journal of Computer
Vision, vol. 75, no. 2, pp. 283–296, 2007.

[14] J. Kalomiros and J. Lygouras, “A reconfigurable architecture
for stereo-assisted detection of point-features for robot map-
ping,” in Proceedings of International Conference on ReConFig-
urable Computing and FPGAs (ReConFig ’09), pp. 404–409,
Cancun, Mexico, December 2009.

[15] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, “A
maximum likelihood stereo algorithm,” Computer Vision and
Image Understanding, vol. 63, no. 3, pp. 542–567, 1996.

[16] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline
search using dynamic programming,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 7, no. 2, pp. 139–
154, 1985.

[17] J. Dı́az, E. Ros, R. Carrillo, and A. Prieto, “Real-time system
for high-image resolution disparity estimation,” IEEE Trans-
actions on Image Processing, vol. 16, no. 1, pp. 280–285, 2007.

[18] K. Ambrosch, W. Kubinger, M. Humenberger, and A.
Steininger, “Flexible hardware-based stereo matching,”

EURASIP Journal on Embedded Systems, vol. 2008, Article ID
386059, 12 pages, 2008.

[19] A. Darabiha, J. Rose, and W. J. MacLean, “Video-rate stereo
depth measurement on programmable hardware,” in Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’03), vol. 1, pp. 203–210,
Madison, Wis, USA, June 2003.

[20] C. K. Liang, C. C. Cheng, Y. C. Lai, L. G. Chen, and H. H.
Chen, “Hardware-efficient belief propagation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’09), pp. 80–87, Miami, Fla, USA, June
2009.

[21] H. Niitsuma and T. Maruyama, Real-Time Detection of Moving
Objects, vol. 3203 of Lecture Notes in Computer Science,
Springer, New York, NY, USA, 2004.

[22] J. A. Kalomiros and J. Lygouras, “Hardware implementation of
a stereo co-processor in a medium-scale field programmable
gate array,” IET Computers and Digital Techniques, vol. 2, no.
5, pp. 336–346, 2008.

[23] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High-
quality real-time stereo using adaptive cost aggregation and
dynamic programming,” in Proceedings of the 3rd International
Symposium on 3D Data Processing, Visualization, and Trans-
mission (3DPVT ’06), pp. 798–805, Washington DC, USA,
June 2006.

[24] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit,
“FastSLAM: a factored solution to the simultaneous local-
ization and mapping problem,” in Proceedings of the 18th
National Conference on Artificial Intelligence (AAAI ’02), the
14th Innovative Applications of Artificial Intelligence Conference
(IAAI ’02), pp. 593–598, Edmonton, Canada, July-August
2002.

[25] K. Murphy, “Bayesian map learning in dynamic environ-
ments,” in Advances in Neural Information Processing Systems
(NIPS), MIT Press, Cambridge, Mass, USA, 1999.

[26] M. Montemerlo and S. Thrun, “FastSLAM, a scalable method
for the simultaneous localization and mapping problem in
robotics,” in Springer Tracts in Advanced Robotics, B. Sicilinao,
O. Khatib, and F. Groen, Eds., vol. 27, Springer, Berlin,
Germany, 2006.

[27] M. S. Grewal and A. P. Angus, Kalman Filtering, Theory and
Practice, Prentice-Hall, Upper Saddle River, NJ, USA, 1993.

[28] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle
filter for nonlinear problems,” IEE Proceedings: Radar, Sonar
and Navigation, vol. 146, no. 1, pp. 2–7, 1999.

[29] R. Sim, P. Elinas, M. Griffin, and J. Little, “Vision-based SLAM
using the Rao-Blackwellized particle filter,” in Proceedings of
IJCAI Workshop on Reasoning with Uncertainty in Robotics, pp.
9–16, Edinburgh, UK, 2005.

[30] M. H. Li, B. R. Hong, R. H. Luo, and Z. H. Wei, “Novel method
for mobile robot simultaneous localization and mapping,”
Journal of Zhejiang University: Science, vol. 7, no. 6, pp. 937–
944, 2006.

[31] Y. Miyajima and T. Maruyama, “A real-time stereo vision
system with FPGA,” in Field Programmable Logic and Applica-
tions, vol. 2778 of Lecture Notes in Computer Science, pp. 448–
457, Springer, Berlin, Germany, 2003.

[32] M. Hariyama, Y. Kobayashi, H. Sasaki, and M. Kameyama,
“FPGA implementation of a stereo matching processor based
on window-parallel-and-pixel-parallel architecture,” IEICE
Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. E88-A, no. 12, pp. 3516–3521,
2005.

International Journal of Reconfigurable Computing 17

[33] J. Woodfill and B. von Herzen, “Real-time stereo vision on
the PARTS reconfigurable computer,” in Proceedings of the
5th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 201–210, April 1997.

[34] K. Ambrosch, M. Humenberger, W. Kubinger, and A.
Steininger, “SAD-based stereo matching using FPGAs,” in
Embedded Computer Vision, Part II, B. Kisacanin, S. Bhat-
tacharyya, and S. Chai, Eds., Springer, London, UK, 2009.

[35] D. K. Masrani and W. J. MacLean, “A real-time large disparity
range stereo-system using FPGAs,” in Proceedings of the 4th
IEEE International Conference on Computer Vision Systems
(ICVS ’06), pp. 13–20, January 2006.

[36] J. Dı́az, E. Ros, S. Mota, E. M. Ortigosa, and B. del Pino, “High
performance stereo computation architecture,” in Proceedings
of the International Conference on Field Programmable Logic
and Applications (FPL ’05), pp. 463–468, Tampere, Finland,
August 2005.

[37] C. C. Cheng, C. K. Liang, Y. C. Lai, H. H. Chen, and
L. G. Chen, “Analysis of belief propagation for hardware
realization,” in Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS ’08), pp. 152–157, Washington, DC,
USA, October 2008.

[38] S. Park and H. Jeong, “High-speed parallel very large scale
integration architecture for global stereo matching,” Journal of
Electronic Imaging, vol. 17, no. 1, Article ID 010501, 2008.

[39] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda,
“Classification and evaluation of cost aggregation methods
for stereo correspondence,” in Proceedings of the 26th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
’08), pp. 1–8, June 2008.

[40] J. Congote, J. Barandiaran, I. Barandiaran, and O. Ruiz,
“Realtime dense stereo matching with dynamic programming
in CUDA,” in Proceedings of the 19th Spanish Congress of
Graphical Informatics (CEIG ’09), pp. 231–234, San Sebastian,
Spain, September 2009.

[41] R. Sim, P. Elinas, M. Griffin, A. Shyr, and J. J. Little, “Design
and analysis of a framework for real-time vision-based SLAM
using Rao-Blackwellised particle filters,” in Proceedings of the
3rd Canadian Conference on Computer and Robot Vision (CRV
’06), Quebec, Canada, June 2006.

[42] A. Cumani, S. Denasi, A. Guiducci, and G. Quaglia, “Robot
localization and mapping with stereo vision,” WSEAS Trans-
actions on Circuits and Systems, vol. 3, no. 10, pp. 2116–2121,
2004.

