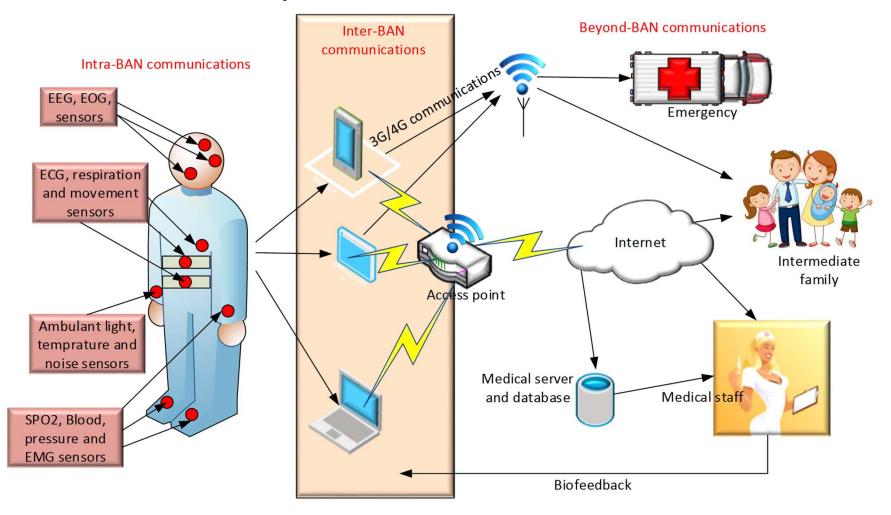
Medium Access Control (MAC) Standards for Wireless Body Area Networks (WBANs) and Security Considerations

Master Thesis

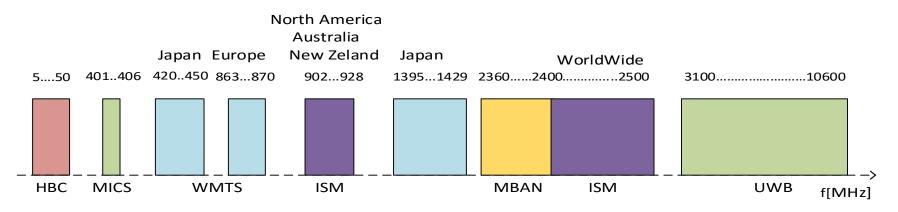
Kiriakos Gavouchidis

Supervisor: Dr. Dimitrios Efstathiou

Overview


- Wireless Body Area Networks (WBANs)
- Medium Access Control (MAC) Standards for WBANs
 - MAC functionality in a WBAN
 - Multiple Access Techniques used in WBANs
 - The MAC protocol in IEEE 802.15.4, 4a, 4j, IEEE 802.15.6, and SmartBAN
 - Comparison of the standards
- WBAN Security

Goals of the Master Thesis


- Overview of the WBAN technology
- The main characteristics of MAC
- Evolution of the MAC standards
- Comparison
- Existing implementations
- Challenges in security of WBANs

Overview of the WBAN technology

• Wireless Body Area Network

Overview of the WBAN technology

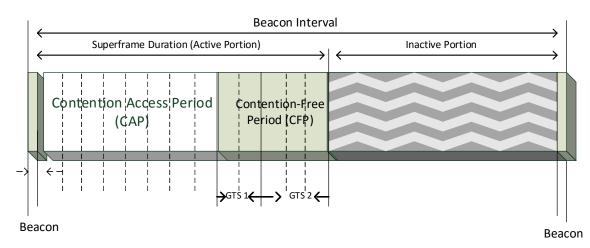
- Radio frequency WBANs divided in
 - Medical implant communications service (MICS)
 - Wireless medical telemetry system (WMTS)
 - Industrial scientific medical (ISM)
 - Medical body area network (MBAN)
 - Ultra-wide band (UWB)

Overview of the WBAN technology

- WBAN applications
 - Healthcare
 - Sport and entertainment
 - Military and defense
- WBAN application requirements Power consumption, Coexistence, Antenna and radio channel, security and privacy, range and topology, bit rate, device form, safety, signal processing

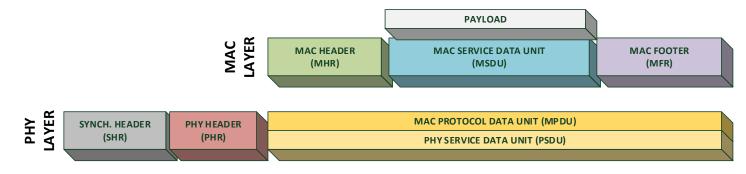
MAC functionality

- MAC protocols classified in
 - *scheduled- or reservation-based MAC protocols*
 - *contention-based MAC protocols*
- Schedule based MAC protocols are divided into
 - synchronous schedule based MAC protocols
 - asynchronous schedule based MAC protocols
 - hybrid schedule based MAC protocols


Multiple Access Techniques

- Time Division Multiple Access (TDMA)
 - Each node transmits its data in its own time slot sharing the same frequency channel
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
 - Transfer disabling for a node if other nodes are transmitting
- Frequency division multiple access (FDMA)
- Pure ALOHA (contention-based protocol)
 Low energy efficiency, high rate of collisions
- Slotted ALOHA

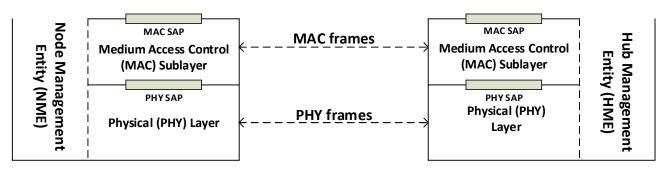
- Developed for the design and implementation of LR-WPANs
- Defines full-function (FFD) and reducedfunction devices (RFD)
- The standard specifies a PAN coordinator (is a FFD) to manage the network
- Star topology, peer-to-peer topology, cluster tree network


- Two modes of operation
 - Beacon-enabled mode
 - Nonbeacon-enabled mode
- Nonbeacon-enabled star topology: nodes communicate with the PAN coordinator in a contention-based way using CSMA/CA
- Advantage: nodes do not need to regularly power-up to receive a beacon
- Disadvantage: the coordinator cannot start communication. The nodes must poll the coordinator

- The beacon-enabled mode provides a superframe structure
- The access to the channel is managed through the superframe
- IEEE 802.15.4 superframe structure

- Contention-based transactions take place in the CAP
- CFP is reserved for high priority data
- If a node wants to communicate with the coordinator it requests a guaranteed time slot (GTS)
- In the inactive part of the SF nodes go into the sleep state
- The CAP slots are accessed using CSMA/CA

- The MAC sublayer handles the access to the physical radio channel (with CSMA/CA)
- Four type of MAC frames defined in this standard: Data frame, Beacon frame, Ack frame, MAC command frame
- The frame structure:

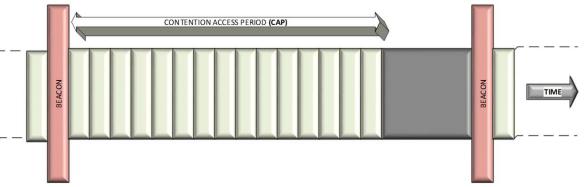


- Responsibilities of the IEEE 802.15.4 MAC
 - beacon generation through the coordinator
 - node synchronization to the network beacons
 - supporting PAN association and disassociation
 - supporting coordinator and node security
 - handling and managing GTS

- A standard for short-range (human body), highly reliable wireless communications
- It allows a very low transmit power device operation

IEEE 802.15.6 MAC - Function

Reference model


- Transmission: The MAC client passes via the MAC service access point (SAP) its MAC service data units (MSDUs) to the MAC sublayer
- The MAC sublayer passes frames (MAC protocol data units) to the PHY layer via the PHY SAP

IEEE 802.15.6 MAC - Function

- A beacon is a frame transmitted by a hub to facilitate network management, such as the coordination of medium access and power management of the nodes
- IEEE 802.15.6 divides the time axis or channel into superframes of equal length or into beacon periods
- Each superframe contains a number of timeslots used for the data transmission

IEEE 802.15.6 MAC - Function

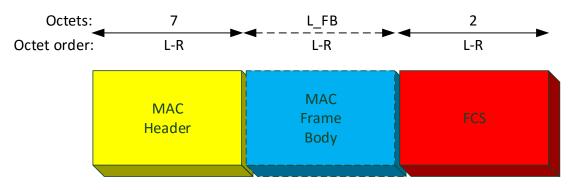
• The total time interval of the timeslots is called Contention Access Period (CAP)

 A frame transition can include more than one allocation slots and must not necessarily starts or ends on an allocation slot boundary

IEEE 802.15.6 MAC - Characteristics

- Node types according to their functionality
 - Sensor (converts a physical quantity in electronic signals)
 - Actuator (controls the flow of material or power)
 - Personal device (collects the data and interacts with users)
- Node types according to their role
 - End node (includes MAC, PHY and optional security services)
 - Relay (receives data from end node and send it to the PD)
 - Coordinator (hub, all other nodes communicate through it)
- Node types according to their implementation
 - Body surface node
 - Implant node
 - External node

IEEE 802.15.6 MAC - Characteristics


- The logical set of one hub and n nodes (max 64) is defined as Body Area Network
- One-hop star BAN
- Two-hop extended star BAN (relay nodes)
- Communication methods
 - Beacon mode
 - Nonbeacon mode

IEEE 802.15.6 MAC - Characteristics

- In the beacon mode the hub controls the communication
- In the non-beacon mode:
 - the communication is asynchronous
 - A node communicates with the hub only when it needs to
 - Nodes use CSMA/CA
 - Receiving data from the hub takes place by power up and poll the hub

IEEE 802.15.6 MAC – Frame formats

- A MAC frame is an ordered sequence of mandatory and optional fields
- The MAC general format:

• The MAC header and the Frame Check Sequence (FCS) have fixed-length, and the MAC frame body has variable length

IEEE 802.15.6 MAC – Frame formats and functions

- The frame payload consists of management type frames, control type frames, and data type frames (e.g. emergency frame)
- The Frame Check Sequence (FCS) is an error detecting code added to a frame
- MAC function overview:
 - Frame processing
 - Addressing
 - Priority mapping

IEEE 802.15.6 MAC – Frame functions

- MAC frame processing overview:
 - Frame reception (rules on preparing frames for transmission and processing on reception)
 - Frame sequencing
 - Frame retries
 - Frame timeout
 - Frame separation
 - Frame acknowledgement
 - Duplicate detection
 - Fragmentation and Reassembly

Standards Comparison

- IEEE 802.15.1 (Bluetooth)
 - Limited scalability due to limited nr of nodes
 - High-power consumption (40 mW)
- BT Low-Energy
 - \circ $\,$ Latency less than this of standard BT $\,$
 - It reduces power consumption
- IEEE 802.15.4
 - First protocol enabling nodes/hubs to share the wireless platform
 - Designed for WPANs with the features low-cost, low power consumption (0.5mW-1mW), and operation in short range (10-100m)

Standards Comparison

- IEEE 802.15.4
 - Cannot support efficient high data rate applications (<= 250 kbps)
 - Scores over BT: lower cost, lower power consumption, longer battery life, scalability features, smaller latency, supports standard-based security
- IEEE 802.15.6
 - Its target: wearable devices
 - The first international standard for WBANs

Standards Comparison

- IEEE 802.15.6
 - Operates in low-power and short range (<3m)
 - The MAC supports multicast, unicast, and broadcast communication
 - Shorter header -> higher data rates
 - The frame control field format combines frame type and subtype to classify different frames
 - Collisions are combated using the User Priority. UP prioritizes the medium access of some frame types (e.g. frame type emergency)
 - Complex and unsuitable for ultra-low-power devices

Standards comparison

WBAN MAC standards	Frequency band	Data Rate	Medium access	Network topology	Coverage area	Max app throughput	# nodes	# channels	Security	Latency
IEEE 802.15.1	2.4 GHz ISM	1, 1.2, 3, 24 mbps	TDMA	star scatternet	1-100 m	2.1 mbps (2.0)	7 active 255 total	79	shared key AES-CCM	< 10 sec
Bluetooth LE	2.4 GHz ISM	1 mbps	FH + TDMA	piconet star	1-10 m (1)	236 kbps	App limited	3	128 bit AES-CCM	3 - 6 ms
IEEE 802.15.4	868.3 MHz 902-928 MHz 2405-2480 MHz	868/915 MHz: 20/40 kbps 2.4 GHz: 250 kbps	CSMA/CA, GTS	star clustertree mesh	10-100 m	151 kbps	Up to 65536 devices per network	868.3 MHz: 1 902-928 MHz: 10 2405-2480 MHz: 16	128 bit AES-CCM	20-30 ms
IEEE 802.15.4a	UWB: 250-750 MHz 3244-4742 MHz 5944-10234 MHz CSS: 2400-2483.5 MHz	UWB:110 kbps, 851 kbps(nominal), 6.81 mbps, 27.24 mbps CSS: 1 mbps (nominal) 250 kbps	Random ALOHA CSMA/CA	star clustertree mesh	10-100 m		Up to 65536 devices per network	UWB: 16 CSS: 14	128 bit AES-CCM	
IEEE 802.15.4j	healthcare-MBAN: 2360-2390 MHz MBAN anywhere: 2390-2400 MHz	250 kbps		star clustertree mesh	~ 10-30 m		65535	2360-2390 MHz: 7 2390-2400 MHz: 3	128 bit AES-CCM	
IEEE 802.15.6	402-958 MHz 2360-2483 MHz 3.1 GHz - 10.6 GHz	Narrowband (NB): 402-405 MHz: 75.9-455.4 kbps 420-450 MHz: 75.9-187.5 kbps 863-870 MHz: 101.2-607.1 kbps 902-928 MHz: 101.2-607.1 kbps 950-958 MHz: 101.2-607.1 kbps 2360-2400 MHz: 121.4-971.4 kbps 2460-2483.5 MHz: 121.4-971.4 kbps 2400-2483.5 MHz: 121.4-971.4 kbps 2400-2483.5 MHz: 121.4-971.4 kbps 2400-2483.5 MHz: 121.4-971.4 kbps 2400-2483.5 MHz: 121.4-971.4 kbps 1000-5,000: 394.8-12,636 kbps 6,000-10,000: 487-15,600 kbps HBC: 21 MHz: 164.1-1,312.5 kbps	CSMA/CA slotted ALOHA EAP	star multihop star	< 3 m out-body	674.7 kbps (NB)	64 nMaxBANSize	Narrowband (NB): 402-405 MHz: 10 420-450 MHz: 12 863-870 MHz: 14 902-928 MHz: 60 950-958 MHz: 16 2360-2400 MHz: 39 2400-2483.5 MHz: 79 UWB: 3,000-5,000: 3 6,000-10,000: 8 HBC: 21 MHz: 1	128 bit AES-CCM	(*) App class A<3 s (*) App class B<3 s (*) App class D<3 s (*) App class C<3 s (*) App class C<60 s (*) App class F<300 ms
SmartBAN	2401-2481 MHz ISM	Nominally < 100 kbps	 (a) Scheduled Channel Access (as TDMA) (b) Slotted ALOHA (c) Multi-use channel access 	single-hop star	<= 1.5 m			37 data channels and 3 control channels	TBD	< 125 ms

WBAN MAC standards	Power Consumption	Battery life	Scalability		
IEEE 802.15.1	40 mW	1-7 days	Limited		
Bluetooth LE	0.147 mW	4 years (~100 μAh per day coin cell)	Limited		
IEEE 802.15.4	2.15.4 0.5 mW – 1 mW 4-6 months		beacon-enabled mode: Limited nonbeacon-enabled mode: Yes		
IEEE 802.15.4a	0.1 mW		Limited		
IEEE 802.15.4j	50 mW		Limited		
IEEE 802.15.6	~ 10 mW	(*) App class A: 0.13095-0.19156 years, app class B: 0.20489 years, app class D: 0.68493 years, app class E: 1.47530-1.92350 years, app class C: 21.3336 years, app class F: 0.04839-0.20581 years	Yes		
SmartBAN	TBD	TBD	Yes		

MAC sublayer challenges

- IEEE 802.15.6 defines message exchange protocols and packet formats. This help to achieve simple tasks.
- In what order do we schedule allocation intervals?
- When should relays be used?
- When should we cope with failed packet reception?
- WBAN topology and density changes need to be addressed in the MAC protocol design
- Limited sensitivity in WBANs (the min signal power for reliable communication)
- Managing interference if multiple people wearing WBANs

WBAN Privacy and Security

- Privacy is the right of every individual to control its own data
- Data security is the protection of data sored inside the WBAN or data being transferred outside of the WBAN from unauthorized users
- WBAN security requirements
 - Data storage requirements (e.g. dependability)
 - Data access requirements (e.g. revocability)
 - Other requirements (e.g. authentication)

MAC security specifications

- IEEE 802.15.4 MAC
 - Data confidentiality
 - Data authenticity
 - Replay protection
- The beacon, data, and control packet types can include security information. Only the ACK packet type cannot
- Eight different security levels, each of them is controlled by a specific security suite with different properties

MAC security specifications

- IEEE 802.15.6
 - Three security levels
 - Level 0 Unsecured communication
 - Level 1 Authentication but not encryption
 - Level 2 Authentication and encryption
 - In level 0 the transmission of messages happens in unsecured frames
 - Level 1 provides authenticity, replay defense, and integrity validation but not confidentiality, and privacy protection
 - The selection of the security level happens when the node is joining the WBAN

Security challenges in WBANs

- Balance of security and efficiency due to limited computation and storage capabilities of WBANs (lightweight cryptographic characteristics)
- Balance of security and safety (secure access control, patient safety = WBAN data can be accessed whenever needed)
- Balance of security and usability (human interactions to setup data security mechanisms, WBAN devices easy to use)
- Device interoperability

Conclusions of the Master Thesis

- There are many exciting perspectives for the further development of the WBAN technology in the MAC sublayer
- In our days security is a fundamental feature
- Security approaches coming from other network types are not applicable to WBANs
- Security solutions in WBANs should be lightweight and inexpensive in term of resource consumption