

TEI OF CENTRAL MACEDONIA - SERRES

M.Sc. in Communication and Information Systems

A microcontroller-based system for multi sensor

monitoring and messaging via GSM network

Bachelor thesis

Angelakis Vaios

Supervisor: Kazarlis S.

Serres, November 2015

http://informatics.teicm.gr/msc/

Introduction

Nowadays where the human need for quality but cheap farm products is

essential.

The AgriArduino is a system inspecting sensors.

From the side of the farmers attempt to lower production costs but also

improve product quality can be achieved using such systems. The

AgriArduino is essentially a tool that updates directly the producers when

there are risks to the farm. Recording the circumstances as well as what

natural resources is available. In Greece, where the scale of each farmer is

small and dispersed but also uneven-technology can help farmers to become

more competitive.

CONTENTS Pages

The benefits of use IT in Agriculture……………... 4

1. Objective…………………………………………… 7

a. Precision Agriculture……………………………… 8

b. AgriArduino ………………………………………… 9

2. Arduino ……………………………………………… 10

a. Hardware……………………………………………. 10

b. Software for Arduino………………………………. 12

c. Arduino Gsm Shield ……………………………… 14

3. Code

Flow Diagram for Water pressure…………........ 20

Flow diagram for Temperature………………….. 22

Agriarduino code ………………………………… 23

4. Arduino Update Database ……………………….. 39

Online Chart……………………………………….. 46

5. Android Application………………………………... 48

6. Scalability and improving………………………….. 51

7. Conclusions…………………………………………. 52

8. Bibliography…………………………………………. 53

The benefits of use IT in Agriculture

Given the challenges, the arrival of information communication technology

(ICT) is well timed. The benefits of the green revolution greatly improved

agricultural productivity.

However, there is a demonstrable need for a new revolution that will bring

lower prices for consumers (through reduced waste and more-efficient supply

chain management), contribute to ―smart‖ agriculture, and incentivize farmers

(for example, through higher income) to increase their production.

Public and private sector actors have long been on the search for effective

solutions to address both the long- and short-term challenges in agriculture,

including how to answer the abundant information needs of farmers. ICT is

one of these solutions, and has recently unleashed incredible potential to

improve agriculture in developing countries specifically. Technology has taken

an enormous leap beyond the costly, bulky, energy-consuming equipment

once available to the very few to store and analyze agricultural and scientific

data.

With the booming mobile, wireless, and Internet industries, ICT has found a

foothold even in poor smallholder farms and in their activities. The ability of

ICTs to bring refreshed momentum to agriculture appears even more

compelling in light of rising investments in agricultural research, the private

sector’s strong interest in the development and spread of ICTs, and the

upsurge of organizations committed to the agricultural development agenda.

But what exactly are ICTs? And can they really be useful and cost-effective

for poor farmers with restricted access to capital, electricity, and

infrastructure? First, an ICT is any device, tool, or application that permits the

exchange or collection of data through interaction or transmission. ICT is an

umbrella term that includes anything ranging from radio to satellite imagery to

mobile phones or electronic money transfers. Second, these ICTs and others

have gained traction even in impoverished regions. The increases in their

affordability, accessibility, and adaptability have resulted in their use even

within rural homesteads relying on agriculture. New, small devices (such as

multifunctional mobile phones and nanotechnology for food safety),

infrastructure (such as mobile telecommunications networks and cloud

computing facilities), and especially applications (for example, that transfer

money or track an item moving through a global supply chain) have

proliferated.

Many of the questions asked by farmers (including questions on how to

increase yields, access markets, and adapt to weather conditions) can now be

answered faster, with greater ease, and increased accuracy. Many of the

questions can also be answered with a dialogue—where farmers, experts,

and government can select best solutions based on a diverse set of expertise

and experience.

The types of ICT-enabled services that are useful to improving the capacity

and livelihoods of poor smallholders are growing quickly. One of the best

examples of these services is the use of mobile phones as a platform for

exchanging information through short messaging services (SMS).

Reuters Market Light, for example, services over 200,000 smallholder

subscribers in 10 different states in India for a cost of $1.50 per month. The

farmers receive four to five messages per day on prices, commodities, and

advisory services from a database with information on 150 crops and more

than 1,000 markets. Preliminary evidence suggests that collectively, the

service may have generated US$ 2–3 billion in income for farmers (Mehra

2010), while over 50 percent of them have reduced their spending on

agriculture inputs.

ICT-enabled services often use multiple technologies to provide information.

This model is being used to provide rural farmers localized (non-urban)

forecasts so that they can prepare for weather-related events. In resource-

constrained environments especially, providers use satellites or remote

sensors (to gather temperature data), Internet (to store large amounts of

data), and mobile phones (to disseminate temperature information to remote

farmers cheaply)—to prevent crop losses and mitigate effects from natural

adversities.

Other, more-specialized applications, such as software used for supply chain

or financial management are also becoming more relevant in smallholder

farming. Simple accounting software has allowed cooperatives to manage

production, aggregation, and sales with increased accuracy.

The Malian Coprokazan, involved in shea butter production, began using

solar-powered computers with keyboards adapted to the local language to file

members’ records electronically. Along with electronic administration, the

coop plans to invest in Global Positioning System (GPS) technology to obtain

certifications and use cameras and video as training materials to raise the

quality of production. From 2006 to 2010 alone, the coop’s membership grew

from 400 to 1,000 producers

Chapter 1. Objective

The main objective is to create a general system for receiving data from an

external device and immediately update - alert the user. Therefore the system

 measures the temperature and pressure of water

 alarm in extreme situations by calling or sms,

 inform about what happens in the external environment if received sms.

The system has two modes:

Control Water pressure

 when water pressure is low .

 when water pressure is high .

Control Temperature

 when the temperature to a normal level

 when it has surpassed the breakpoints

a. Precision Agriculture

In the past few years, new trends have emerged in the agricultural sector.

Thanks to developments in the field of wireless sensor networks as well as

miniaturization of the sensor boards, precision agriculture started emerging.

Precision agriculture concentrates on providing the means for observing,

assessing and controlling agricultural practices.

It covers a wide range of agricultural concerns from daily herd management

through horticulture to field crop production. It concerns as well pre- and post-

production aspects of agricultural enterprises.

A facet of precision agriculture concentrates on site-specific crop

management. This encompasses different aspects, such as monitoring soil,

crop and climate in a field generalizing the results to a complete parcel

providing a decision support system (DSS) for delivering insight into possible

treatments, field-wide or for specific parts of a field; and the means for taking

differential action, for example, varying in real-time an operation such as

fertilizer, lime and pesticide application, tillage, or sowing rate.

b. The AgriArduino

A microcontroller-based system for multi sensor monitoring and messaging

via GSM network consists of hardware which is:

 Arduino Uno

 Gsm Shield

 Lcd Shield

 Lm35 (temp sensor)

 F83161.3 switch for water pressure

The AgriArduino (A microcontroller-based system for multi sensor monitoring

and messaging via GSM network) enables us to accept calls when the

temperature exceeds 35 degrees Celsius.

It knows when the water pressure is sufficient for watering.

Moreover we have the ability to send sms to inform the database located on a

server.

The AgriArduino informs us about the data collected through either a website

the use and application smartphone Android.

Chapter 2. Arduino

a. Hardware

Arduino Uno

An Arduino board consists of an Atmel 8-, 16- or 32-bit

AVR microcontroller with complementary components that facilitate

programming and incorporation into other circuits. An important aspect of the

Arduino is its standard connectors, which lets users connect the CPU board to

a variety of interchangeable add-on modules known as shields. Some shields

communicate with the Arduino board directly over various pins, but many

shields are individually addressable via an I²C serial bus—so many shields

can be stacked and used in parallel. Official Arduinos have used

the megaAVRseries of chips, specifically the ATmega8, ATmega168,

ATmega328, ATmega1280, and ATmega2560. A handful of other processors

have been used by Arduino compatibles. Most boards include a 5 volt linear

regulator and a 16 MHz crystal oscillator (or ceramic resonator in some

variants), although some designs such as the LilyPad run at 8 MHz and

dispense with the onboard voltage regulator due to specific form-factor

restrictions. An Arduino's microcontroller is also pre-programmed with a boot

loader that simplifies uploading of programs to the on-chip flash memory,

compared with other devices that typically need an external programmer. This

makes using an Arduino more straightforward by allowing the use of an

ordinary computer as the programmer.

At a conceptual level, when using the Arduino software stack, all boards are

programmed over an RS-232 serial connection, but the way this is

implemented varies by hardware version. Serial Arduino boards contain a

level shifter circuit to convert between RS-232-level and TTL-level signals.

Current Arduino boards are programmed via USB, implemented using USB-

to-serial adapter chips such as the FTDI FT232. Some variants, such as the

Arduino Mini and the unofficial Boarduino, use a detachable USB-to-serial

http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/MegaAVR
http://en.wikipedia.org/wiki/Linear_regulator
http://en.wikipedia.org/wiki/Linear_regulator
http://en.wikipedia.org/wiki/Linear_regulator
http://en.wikipedia.org/wiki/Crystal_oscillator
http://en.wikipedia.org/wiki/Ceramic_resonator
http://en.wikipedia.org/wiki/Boot_loader
http://en.wikipedia.org/wiki/Boot_loader
http://en.wikipedia.org/wiki/Boot_loader
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Programmer_(hardware)
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/FTDI

adapter board or cable, Bluetooth or other methods. (When used with

traditional microcontroller tools instead of the Arduino IDE, standard

AVR ISP programming is used.)

The Arduino board exposes most of the microcontroller's I/O pins for use by

other circuits. The Diecimila, Duemilanove, and current Uno provide 14 digital

I/O pins, six of which can produce pulse-width modulated signals, and six

analog inputs, which can also be used as six digital I/O pins. These pins are

on the top of the board, via female 0.10-inch (2.5 mm) headers. Several plug-

in application shields are also commercially available. The Arduino Nano, and

Arduino-compatible Bare Bones Board and Boarduino boards may provide

male header pins on the underside of the board that can plug into solderless

breadboards.

There are many Arduino-compatible and Arduino-derived boards. Some are

functionally equivalent to an Arduino and can be used interchangeably. Many

enhance the basic Arduino by adding output drivers, often for use in school-

level education to simplify the construction of buggies and small robots.

Others are electrically equivalent but change the form factor, sometimes

retaining compatibility with shields, sometimes not. Some variants use

completely different processors, with varying levels of compatibility.

http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/In-system_programming
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Solderless_breadboard
http://en.wikipedia.org/wiki/Solderless_breadboard
http://en.wikipedia.org/wiki/Solderless_breadboard

b. Software for Arduino

The Arduino integrated development environment (IDE) is a cross-

platform application written in Java, and derives from the IDE for the

Processing programming language and the Wiring projects. It is designed to

introduce programming to artists and other newcomers unfamiliar with

software development. It includes a code editor with features such as syntax

highlighting, brace matching, and automatic indentation, and is also capable

of compiling and uploading programs to the board with a single click. A

program or code written for Arduino is called a "sketch".[16]

Arduino programs are written in C or C++. The Arduino IDE comes with

a software library called "Wiring" from the original Wiring project, which makes

many common input/output operations much easier. The users need only to

define two functions to make an executable cyclic executive program:

 setup() : a function run once at the start of a program that can initialize

settings

 loop() : a function called repeatedly until the board powers off

A typical first program for a microcontroller simply blinks an LED on and off. In

the Arduino environment, the user might write a program like this:[17]

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Wiring_(development_platform)
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Brace_matching
http://en.wikipedia.org/wiki/Arduino#cite_note-17
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Wiring_(development_platform)
http://en.wikipedia.org/wiki/Cyclic_executive
http://en.wikipedia.org/wiki/Light-emitting_diode
http://en.wikipedia.org/wiki/Arduino#cite_note-Blink_Tutorial-18

The integrated pin 13 LED

#define LED_PIN 13

void setup() {

 pinMode(LED_PIN, OUTPUT); // Enable pin 13 for digital output

}

void loop() {

 digitalWrite(LED_PIN, HIGH); // Turn on the LED

 delay(1000); // Wait one second (1000 milliseconds)

 digitalWrite(LED_PIN, LOW); // Turn off the LED

 delay(1000); // Wait one second

}

Most Arduino boards contain an LED and a load resistor connected between

the pin 13 and ground, which is a convenient feature for many simple

tests.[17] The previous code would not be seen by a standard C++ compiler as

a valid program, so when the user clicks the "Upload to I/O board" button in

the IDE, a copy of the code is written to a temporary file with an extra include

header at the top and a very simple main() function at the bottom, to make it a

valid C++ program.

The Arduino IDE uses the GNU toolchain and AVR Libc to compile programs,

and uses avrdude to upload programs to the board.

As the Arduino platform uses Atmel microcontrollers, Atmel's development

environment, AVR Studio or the newer Atmel Studio, may also be used to

develop software for the Arduino.

Arduino is open-source hardware: the Arduino hardware reference designs

are distributed under a Creative Commons Attribution Share-Alike 2.5 license

http://en.wikipedia.org/wiki/Arduino#cite_note-Blink_Tutorial-18
http://en.wikipedia.org/wiki/Main_function
http://en.wikipedia.org/wiki/GNU_toolchain
http://en.wikipedia.org/wiki/Open-source_hardware
http://en.wikipedia.org/wiki/Creative_Commons

and are available on the Arduino Web site. Layout and production files for

some versions of the Arduino hardware are also available. The source code

for the IDE is available and released under the GNU General Public License,

version 2.

Although the hardware and software designs are freely available

under copyleft licenses, the developers have requested that the name

"Arduino" be exclusive to the official product and not be used for derivative

works without permission. The official policy document on the use of the

Arduino name emphasizes that the project is open to incorporating work by

others into the official product.[21] Several Arduino-compatible products

commercially released have avoided the "Arduino" name by using "-duino"

name variants.

c. Arduino Gsm Shield

The Arduino GSM Shield connects your Arduino to the internet using the

GPRS wireless network. Just plug this module onto your Arduino board, plug

in a SIM card from an operator offering GPRS coverage and follow a few

simple instructions to start controlling your world through the internet. You can

also make/receive voice calls (you will need an external speaker and

microphone circuit) and send/receive SMS messages.

The Arduino GSM Shield allows an Arduino board to connect to the internet,

make/receive voice calls and send/receive SMS messages. The shield uses a

radio modem M10 by Quectel (datasheet). It is possible to communicate with

the board using AT commands. The GSM library has a large number of

methods for communication with the shield.

The shield uses digital pins 2 and 3 for software serial communication with the

M10. Pin 2 is connected to the M10’s TX pin and pin 3 to its RX pin. See

these notes for working with an Arduino Mega, Mega ADK, or Leonardo. The

modem's PWRKEY pin is connected to Arduino pin 7.

The M10 is a Quad-band GSM/GPRS modem that works at

frequencies GSM850MHz, GSM900MHz, DCS1800MHz andPCS1900MHz. It

http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Generic_trademark
http://en.wikipedia.org/wiki/Arduino#cite_note-AutoF7-44-22
http://arduino.cc/en/uploads/Main/Quectel_M10_datasheet.pdf
http://arduino.cc/en/uploads/Main/Quectel_M10_AT_commands.pdf
http://arduino.cc/en/Reference/GSM
http://arduino.cc/en/Guide/GSMShieldLeonardoMega
http://arduino.cc/en/Guide/GSMShieldLeonardoMega
http://arduino.cc/en/Guide/GSMShieldLeonardoMega

supports TCP/UDP and HTTP protocols through a GPRS connection. GPRS

data downlink and uplink transfer speed maximum is 85.6 kbps.

To interface with the cellular network, the board requires a SIM card provided

by a network operator. See the getting started page for additional information

on SIM usage.

The most recent revision of the board uses the 1.0 pinout on rev 3 of the

Arduino Uno board.

The GSM shield comes bundled with a SIM from Telefonica/Movilforum that

will work well for developing machine to machine (M2M) applications. It is not

necessary to use this specific card with the shield. You may use any SIM that

works on a network in your area.

The Movilforum SIM card includes a roaming plan. It can be used on any

supported GSM network. There is coverage throughout the Americas and

Europe for this SIM, check the Movilforum service availability page for specific

countries that have supported networks.

Activation of the SIM is handled by Movilforum. Detailed instructions on how

to register and activate your SIM online and add credit are included on a small

pamphlet that comes with your shield. The SIM must be inserted into a

powered GSM shield that is mounted on an Arduino for activation.

http://arduino.cc/en/Guide/ArduinoGSMShield#toc4
http://arduinosim.movilforum.com/service.php
http://arduino.cc/en/uploads/Main/GSMShield_Flyer.pdf
http://arduino.cc/en/uploads/Main/GSMShield_Flyer.pdf
http://arduino.cc/en/uploads/Main/GSMShield_Flyer.pdf

These SIM card come without a PIN, but it is possible to set one using the

GSM library's GSMPIN class.

You cannot use the included SIM to place or receive voice calls.

You can only place and receive SMS with other SIMs on the Movilforum

network.

It's not possible to create a server that accepts incoming requests from the

public internet. However, the Movilforum SIM will accept incoming requests

from other SIM cards on the Movilforum network.

For using the voice, and other functions of the shield, you'll need to find a

different network provider and SIM. Operators will have different policies for

their SIM cards, check with them directly to determine what types of

connections are supported.

Power requirements

It is recommended that the board be powered with an external power supply

that can provide between 700mA and 1000mA. Powering an Arduino and the

GSM shield from a USB connection is not recommended, as USB cannot

provide the required current for when the modem is in heavy use.

The modem can pull up to 2A of current at peak usage, which can occur

during data transmission. This current is provided through the large orange

capacitor on the board's surface.

On board indicators

The shield contains a number of status LEDs:

 On: shows the Shield gets power.

 Status: turns on to when the modem is powered and data is being

transferred to/from the GSM/GPRS network.

http://arduino.cc/en/Reference/GSMPINConstructor

 Net: blinks when the modem is communicating with the radio network.

On board interfaces

The shield supports AIN1 and AOUT1 as audio interfaces; an analog input

channel and an analog output channel. The input, exposed on

pins MIC1P/MIC1N, can be used for both microphone and line inputs. An

electret microphone can be used for this interface. The output, exposed as

lines SPK1P/SPK1N, can be used with either a receiver or speaker. Through

the modem, it is possible to make voice calls. In order to speak to and hear

the other party, you will need to add a speaker and microphone.

Lcd Shield

The LCD Keypad shield is developed for Arduino compatible boards, to

provide a user-friendly interface that allows users to go through the menu,

make selections etc. It consists of a 1602 white character blue backlight LCD.

The keypad consists of 5 keys — select, up, right, down and left. To save the

digital IO pins, the keypad interface uses only one ADC channel. The key

value is read through a 5 stage voltage divider.

Lm 35 Sensor

LM35 is a precision IC temperature sensor with its output proportional to the

temperature (in oC). The sensor circuitry is sealed and therefore it is not

http://www.engineersgarage.com/articles/temperature-sensors

subjected to oxidation and other processes. With LM35, temperature can be

measured more accurately than with a thermistor. It also possess low self

heating and does not cause more than 0.1 oC temperature rise in still air.

• F83161.3 switch for water pressure:

When water pressure is increased switch open

Chapter 3. Code

Flow Diagram for Water pressure control

The system is in standby for as long as the water pressure switch is closed,

when received any sms then update Database for the longer is the situation of

that moment.

When the switch water pressure open up it is sent sms to the user informing

him that there is water available.

Flow Diagram for Temperature control

The system is in standby as long as the temperature is below 30 degrees

Celsius, when received any sms then update the DataBase for the longer is

the temperature at that moment.

When the temperature exceeds 30 degrees then calls the user.

AgriArduino code for water pressure

Highlights of the code

Variables to hold the server, path.

char server[] = "angelaki.gr";

char path[] = "/arduino/get.php?action=insert&sensor1=";

int port = 80;

Port 80 is the port that the server "listens to" or expects to receive from a Web

client, assuming that the default was taken when the server was configured or

set up.

The temperature sensor LM35 linked with A1 (analog) pin of Arduino.

int tempPin = A1;

The Water Pressure Switch linked with A3 (analog) pin of Arduino.

int sensorValue = analogRead(A3);

Checks for as much water pressure switch is open execute orders that are

within the loop.

 while (sensorValue > 1010){

Calls the function through which it will be sent sms.

sendsmsFunction();

Calls the function through which it will be update DataBase.

UpdateDBFunction(sw);

Read temperature and to convert degrees Celsius.

temp = analogRead(tempPin);

temp = temp/2;

Make a voice call.

vcs.voiceCall("**********");

Important to connect and sent data to the DataBase needs to connect to the

specified Access Point Name (APN) to initiate GPRS communication.

Every cellular provider has an Access Point Name (APN) that serves as a

bridge between the cellular network and the internet. Sometimes, there is a

username and password associated with the connection point. For example,

the Bluevia APN is bluevia.movistar.es, but it has no password or login name.

Syntax

grps.attachGPRS(APN, user, password)

Parameters

 APN : char array, the Access Point Name (APN) provided by the

mobile operator

 user : char array, the username for the APN

 password : char array, the password to access the APN

(gprs.attachGPRS("gint.b-online.gr", "", "")

// libraries

#include <GSM.h>

#include <LiquidCrystal.h>

// PIN Number

#define PINNUMBER ""

// APN data

#define GPRS_APN "" // replace your GPRS APN

#define GPRS_LOGIN "" // replace with your GPRS login

#define GPRS_PASSWORD "" // replace with your GPRS password

// initialize the library instance

GSMClient client;

GPRS gprs;

GSM gsmAccess; // include a 'true' parameter for debug enabled

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// initialize the library instance

GSM_SMS sms;

GSM_SMS sms1;

GSMVoiceCall vcs;

int temp;

int temp1;

int tempPin = A1;

int flag=0;

int count;

String sw="open";

char senderNumber[20];

// URL, path & port \

char server[] = "angelaki.gr";

char path[] = "/arduino/get.php?action=insert&sensor1=";

int port = 80; // 80 for HTTP

const int buttonPin = A3; // the number of the pushbutton pin

const int ledPin = 13; // the number of the LED pin

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

int temp_analogPin = A1;

char remoteNumber[20];

void setup()

{

 Serial.begin(9600);

 while (!Serial) {

 ;

 }

 Serial.println("SMS Messages Receiver");

 // connection state

}

void loop()

{

 char c;

 int sensorValue = analogRead(A3);

 buttonState = analogRead(buttonPin);

 Serial.println("test ");

 lcd.clear();

 lcd.setCursor(0, 1);

 lcd.print("water:");

 if (sensorValue > 1010) {

 lcd.clear();

 lcd.setCursor(0, 1);

 lcd.print("water:");

 lcd.setCursor(8, 1);

 sw = "open";

 lcd.print("open");

 Serial.print("open ");

 }

 else {

 lcd.clear();

 lcd.setCursor(0, 1);

 lcd.print("water:");

 lcd.setCursor(8, 1);

 sw = "close";

 lcd.print("close");

 }

 delay(1000);

 boolean notConnected = true;

 // Start GSM connection

 while (notConnected)

 {

 if (gsmAccess.begin(PINNUMBER) == GSM_READY)

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("Sensor Water: ");

 Serial.println("GSM initialized");

 Serial.println("Waiting for messages");

 while (sms.available())

 {

 Serial.println("Message received from:");

 // Get remote number

 sms.remoteNumber(senderNumber, 20);

 Serial.println(senderNumber);

 // An example of message disposal

 // Any messages starting with # should be discarded

 if (sms.peek() == '#')

 {

 Serial.println("Discarded SMS");

 sms.flush();

 }

 // Read message bytes and print them

 while (c = sms.read())

 Serial.print(c);

 Serial.println("\nEND OF MESSAGE");

 sms.flush();

 Serial.println("db");

 UpdateDBFunction(sw);

 Serial.println("MESSAGE DELETED");

 }

 // Serial.println(sensorValue);

 while (sensorValue > 1010){

 lcd.clear();

 lcd.setCursor(0, 1);

 lcd.print("water:");

 lcd.setCursor(8, 1);

 sw = "open";

 lcd.print("open");

 Serial.println("sms");

 sendsmsFunction();

 vcs.hangCall();

 Serial.println("hang");

 lcd.setCursor(10, 0);

 if (sms.available())

 {

 Serial.println("Message received from:");

 // Get remote number

 sms.remoteNumber(senderNumber, 20);

 Serial.println(senderNumber);

 // An example of message disposal

 // Any messages starting with # should be discarded

 if (sms.peek() == '#')

 {

 Serial.println("Discarded SMS");

 sms.flush();

 }

 while (c = sms.read())

 Serial.print(c);

 Serial.println("\nEND OF MESSAGE");

 sms.flush();

 UpdateDBFunction(sw);

 Serial.println("MESSAGE DELETED");

 }

 delay(1000);

 sensorValue = analogRead(A3);

 if (sensorValue > 1010) {

 lcd.setCursor(8, 1);

 sw = "open";

 lcd.print("open");

 Serial.print("open ");

 }

 else {

 lcd.setCursor(8, 1);

 sw = "close";

 lcd.print("close");

 }

setup();

 }

}

int readSerial(char result[])

{

 int i = 0;

 while(1)

 {

 while (Serial.available() > 0)

 {

 char inChar = Serial.read();

 if (inChar == '\n')

 {

 result[i] = '\0';

 Serial.flush();

 return 0;

 }

 if(inChar!='\r')

 {

 result[i] = inChar;

 i++;

 }

 }

 }

}

AgriArduino code for Temperature

// libraries

#include <GSM.h>

#include <LiquidCrystal.h>

// PIN Number

#define PINNUMBER ""

// APN data

#define GPRS_APN "" // replace your GPRS APN

#define GPRS_LOGIN "" // replace with your GPRS login

#define GPRS_PASSWORD "" // replace with your GPRS password

// initialize the library instance

GSMClient client;

GPRS gprs;

GSM gsmAccess; // include a 'true' parameter for debug enabled

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// initialize the library instance

GSM_SMS sms;

GSMVoiceCall vcs;

int temp;

int temp1;

int tempPin = A1;

int flag=0;

int count;

int st;

String sw="open";

char senderNumber[20];

// URL, path & port \

char server[] = "angelaki.gr";

char path[] = "/arduino/get.php?action=insert&sensor1=";

int port = 80; // 80 for HTTP

//const int buttonPin = A3; // the number of the pushbutton pin

//const int ledPin = 13; // the number of the LED pin

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

int temp_analogPin = A1;

char remoteNumber[20];

void setup()

{

 Serial.begin(9600);

 while (!Serial) {

 ;

 }

 Serial.println("SMS Messages Receiver");

 // connection state

 boolean notConnected = true;

 // Start GSM connection

 while (notConnected)

 {

 if (gsmAccess.begin(PINNUMBER) == GSM_READY)

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("GSM initialized");

}

void loop()

{

 char c;

 temp = analogRead(tempPin);

 temp = temp/2;

 lcd.clear();

 lcd.setCursor(0, 1);

 lcd.print("Celsius:");

 lcd.setCursor(10, 0);

 lcd.print(temp);

 st = temp;

 temp = analogRead(tempPin);

 temp = temp/2;

 Serial.println(temp);

 delay(1000);

 boolean notConnected = true;

 // Start GSM connection

 while (notConnected)

 {

 if (gsmAccess.begin(PINNUMBER) == GSM_READY)

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("Sensor Water: ");

 Serial.println("GSM initialized");

 Serial.println("Waiting for messages");

 while (sms.available())

 {

 Serial.println("Message received from:");

 // Get remote number

 sms.remoteNumber(senderNumber, 20);

 Serial.println(senderNumber);

 // An example of message disposal

 // Any messages starting with # should be discarded

 if (sms.peek() == '#')

 {

 Serial.println("Discarded SMS");

 sms.flush();

 }

 // Read message bytes and print them

 while (c = sms.read())

 Serial.print(c);

 Serial.println("\nEND OF MESSAGE");

 sms.flush();

 Serial.println("db");

 UpdateDBFunction();

 Serial.println("MESSAGE DELETED");

 // Serial.println(sensorValue);

 while (temp > 30){

 temp = analogRead(tempPin);

 temp = temp/2;

 Serial.println(temp);

 delay(1000);

 if (temp > 30){

 vcs.voiceCall("**********");

 Serial.println("call");

 vcs.hangCall();

 lcd.setCursor(10, 0);

 }

 setup();

 }

 }

}

UpdateDBFunction

void UpdateDBFunction(int temp,String watersw)

{

 boolean notConnected = true;

 // Start GSM shield

 // If your SIM has PIN, pass it as a parameter of begin() in quotes

 while(notConnected)

 {

 if((gsmAccess.begin(PINNUMBER)==GSM_READY) &

 (gprs.attachGPRS("gint.b-online.gr", "", "")==GPRS_READY))

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("connecting...");

 // if you get a connection, report back via serial:

 if (client.connect(server, port))

 {

 Serial.println("connected");

 // Make a HTTP request:

 client.print("GET http://angelaki.gr");

 client.print(path);

 client.print(temp);

 client.print("&sensor2=");

 client.print(watersw);

 client.println(" HTTP/1.0");

 client.println();

 }

 else

 {

 // if you didn't get a connection to the server:

 Serial.println("connection failed");

 }

}

sendsmsFunction

void sendsmsFunction(String txtMsg)

{

 boolean notConnected = true;

int str_len = txtMsg.length() + 1;

// Prepare the character array (the buffer)

char char_array[str_len];

// Copy it over

txtMsg.toCharArray(char_array, str_len);

 // Start GSM shield

 // If your SIM has PIN, pass it as a parameter of begin() in quotes

 while(notConnected)

 {

 if(gsmAccess.begin(PINNUMBER)==GSM_READY)

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("GSM initialized");

 sms.beginSMS(remoteNum);

 sms.print(char_array);

 sms.endSMS();

 Serial.println("\nCOMPLETE!\n");

 return;

}

Chapter 4: AgriArduino Update Database

This project which is based on arduino first of all collect data. These data

should initially be able to store and classified to derive results.

AgriArduino stores the data from sensors in WebDatabase. The database is

located on a server with a domain name www.angelaki.gr.

Listed below are the steps taken to implement the storage of data from the

database arduino.

Create a Database with Mysql

Mysql contained in the server ―tools‖. Create easy database with name

‖angelaki_dbArduino‖ and name of user ―angelaki_user‖ , password:12345.

In the phpMyAdmin Create a Table with sql or tools from phpMyAdmin panel.

http://www.angelaki.gr/

In this table we need a field for each sensor and a field that stores the date

and time are updated.

Create a php file to connect and insert data from AgriArduino

First we connect with database with ―conect.php‖ file

<?php

// Create connection

$con=mysqli_connect("angelaki.gr","angelaki_user","12345");

// Check connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

else echo "ok"

?>

File ―get.php‖ store the data in the DataBase.

<?php

$sensor1= $_GET['sensor1'];

echo "sensor1: ".$sensor1;

$sensor2= $_GET['sensor2'];

echo "sensor2: ".$sensor2;

$now = time();

$num = date("w");

if ($num == 0)

{ $sub = 6; }

else { $sub = ($num-1); }

$WeekMon = mktime(0, 0, 0, date("m", $now) , date("d", $now)-$sub,

date("Y", $now)); //monday week begin calculation

$todayh = getdate($WeekMon); //monday week begin reconvert

//$d = $todayh[mday];

//$m = $todayh[mon];

//$y = $todayh[year];

//echo "$d-$m-$y"; //getdate converted day

$d=strtotime("today");

echo date("Y-m-d", $d) . "
";

 /*

 echo "<pre>";

 var_dump($_REQUEST);

 echo "</pre>";

 */

 $action = null;

 if (array_key_exists("action", $_REQUEST)){

 $action = $_REQUEST["action"]; }

 //1. CONNECT TO DATABASE

 $db_server = "angelaki.gr";

 $db_database = "angelaki_dbArduino";

 $db_username = "angelaki_user";

 $db_password = "12345";

 mysql_connect($db_server,$db_username,$db_password);

 @mysql_select_db($db_database) or die("Unable to select database");

 mysql_query("set names utf8");

 if ($action == "insert"){

 $sensor1= $_REQUEST["sensor1"];

 $sensor2= $_REQUEST["sensor2"];

 $query = "INSERT INTO Arduino (sensor1,sensor2) VALUES

('{$sensor1}', '{$sensor2}')";

 mysql_query($query);

 }else if ($action == "delete"){

 $sensor1= $_REQUEST["sensor1"];

 $query = "DELETE FROM dbMenu WHERE sensor1= {$sensor1}";

 mysql_query($query);

 } // end if

$blugh = "\n";

$k = ",";

$myFile = "data.txt";//save data in the text file for chart.

$fh = fopen($myFile, 'a') or die("can't open file");

fwrite($fh, $blugh);

fwrite($fh, date("Y-m-d", $d));

fwrite($fh, $k);

fwrite($fh, $sensor1);

//fwrite($fh, $sensor2);

fclose($fh);

?>

File ―menu.php‖ display the data from angelaki_dbArduino in a browser.

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8" />

 </head>

 <body background="http://angelaki.gr/test/images/body-

background.gif" >

 <h1>Menu:</h1>

<?php

 /*

 echo "<pre>";

 var_dump($_REQUEST);

 echo "</pre>";

 */

 $action = null;

 if (array_key_exists("action", $_REQUEST)){

 $action = $_REQUEST["action"];

 }

 //1. CONNECT TO DATABASE

 $db_server = "angelaki.gr";

 $db_database = "angelaki_dbArduino";

 $db_username = "angelaki_user";

 $db_password = "12345";

 mysql_connect($db_server,$db_username,$db_password);

 @mysql_select_db($db_database) or die("Unable to select database");

 mysql_query("set names utf8");

 if ($action == "insert"){

 $sensor1= $_REQUEST["sensor1"];

 $sensor2= $_REQUEST["sensor2"];

 $DateTime= $_REQUEST["DateTime"];

 $query = "INSERT INTO Arduino (sensor1, sensor2, DateTime) VALUES

('{$sensor1}', '{$sensor2}', '{$DateTime}')";

 mysql_query($query);

 }else if ($action == "delete"){

 $DateTime = $_REQUEST["DateTime"];

 $query = "DELETE FROM Arduino WHERE DateTime = {$DateTime}";

 mysql_query($query);

 } // end if

 $query = "SELECT * FROM Arduino";

 $result = mysql_query($query);

 $count = 0;

 while ($row = mysql_fetch_assoc($result)){

 //var_dump($row);

 $count++;

 $DateTime= $row["DateTime"];

 $sensor1 = $row["sensor1"];

 $sensor2 = $row["sensor2"];

 echo "
\n DateTime.{$DateTime}
\n

Temperature.:{$sensor1}
\n Sensor2.:

{$sensor2}
\n";

?>

<?php

} // end while

?>

</html>

a. Online Chart with results.

Results display in the user with file ―chart.html‖.

This read the data.txt file and shows in graphical form.

Arduino Code to send data from sensors

AgriArduino send the data for temperature with call the function

―UpdateDBFunction‖.

void UpdateDBFunction(int temp)

{

 boolean notConnected = true;

 // Start GSM shield

 // If your SIM has PIN, pass it as a parameter of begin() in quotes

 while(notConnected)

 {

 if((gsmAccess.begin(PINNUMBER)==GSM_READY) &

 (gprs.attachGPRS("gint.b-online.gr", "", "")==GPRS_READY))

 notConnected = false;

 else

 {

 Serial.println("Not connected");

 delay(1000);

 }

 }

 Serial.println("connecting...");

 // if you get a connection, report back via serial:

 if (client.connect(server, port))

 {

 Serial.println("connected");

 // Make a HTTP request:

 client.print("GET http://angelaki.gr");

 client.print(path);

 client.print(temp);

 client.println(" HTTP/1.0");

 client.println();

 }

 else

 {

 // if you didn't get a connection to the server:

 Serial.println("connection failed");

 }

 }

Chapter 5:Android Application AgriArduino

Agri Arduino is a application which can display the data from the database in

every smartphones features Android software.

This app developed with Eclipse.

Android app read http://angelaki.gr/arduino/phptoxml.php and show the

results.

Phptoxml file converts data from php file to xml format.

http://angelaki.gr/arduino/phptoxml.php

Phptoxml.php code:

<?php

$hostname_conn = "angelaki.gr";

$database_conn = "angelaki_dbArduino";

$username_conn = "angelaki_user";

$password_conn = "12345";

$conn = mysql_pconnect($hostname_conn, $username_conn,

$password_conn) or trigger_error(mysql_error(),E_USER_ERROR);

?>

<?php

// Query the database and get all the records from the Images table

mysql_select_db($database_conn, $conn);

$query_rsImages = "SELECT * FROM Arduino";

$rsImages = mysql_query($query_rsImages, $conn) or die(mysql_error());

$row_rsImages = mysql_fetch_assoc($rsImages);

$totalRows_rsImages = mysql_num_rows($rsImages);

// Send the headers

header('Content-type: text/xml');

header('Pragma: public');

header('Cache-control: private');

header('Expires: -1');

?><?php echo('<?xml version="1.0" encoding="utf-8"?>'); ?>

<root>

 <?php if ($totalRows_rsImages > 0) { // Show if recordset not empty ?>

 <?php do { ?>

 <Arduino>

 <DateTime><?php echo $row_rsImages['DateTime'];

?></DateTime>

 <sensor1><?php echo $row_rsImages['sensor1']; ?></sensor1>

 <sensor2><?php echo $row_rsImages['sensor2']; ?></sensor2>

 </Arduino>

 <?php } while ($row_rsImages = mysql_fetch_assoc($rsImages)); ?>

 <?php } // Show if recordset not empty ?>

</root>

<?php

mysql_free_result($rsImages);

?>

Chapter 6: Scalability and improving

This project has great expandability, things that could be added:

 It could be a solar panel with possibility of charging the battery.

 Sensor detect rain (Water drop Sensor)

 Soil moisture detection sensor

 Arduino gps shield for mode and record the move and safety from theft.

 Cam for image recording.

 Connection solenoid valves for handling catering water from the mobile.

Chapter 7 : Conclusions

The proper use of integrated circuits will have to be a key tool in farmers

threatened by climate change, the environment.

The benefits of using integrated circuits for automation, faster update on what

is happening in the field.

 reduce production costs

 reduction of working hours

 avoid catastrophic risks

 improve product quality

 enhancing competitiveness

 avoiding the use of pesticides

 outlook and improved rural work

Chapter 8: Bibliography

1. http://en.wikipedia.org/wiki/Arduino Arduino Uno

2. http://www.electronique-mixte.fr/kits-de-developpement-processeurs-et-

microcontroleurs/kit-arduino/ Arduino Uno

3. http://www.arduino.cc/en/Main/ArduinoGSMShield Gsm Shield

4. http://www.dfrobot.com/wiki/index.php?title=Arduino_LCD_KeyPad_Shield_(S

KU:_DFR0009)#Pin_Allocation Lcd Shield

5. http://www.amcharts.com/tutorials/loading-external-data Online chart

6. http://www.w3schools.com/

7. https://www.ictinagriculture.org/sourcebook/module-1-introduction-ict-

agricultural-development

8. http://citeseerx.ist.psu.edu

http://en.wikipedia.org/wiki/Arduino
http://www.electronique-mixte.fr/kits-de-developpement-processeurs-et-microcontroleurs/kit-arduino/
http://www.electronique-mixte.fr/kits-de-developpement-processeurs-et-microcontroleurs/kit-arduino/
http://www.arduino.cc/en/Main/ArduinoGSMShield
http://www.dfrobot.com/wiki/index.php?title=Arduino_LCD_KeyPad_Shield_(SKU:_DFR0009)#Pin_Allocation
http://www.dfrobot.com/wiki/index.php?title=Arduino_LCD_KeyPad_Shield_(SKU:_DFR0009)#Pin_Allocation
http://www.amcharts.com/tutorials/loading-external-data
http://www.w3schools.com/
https://www.ictinagriculture.org/sourcebook/module-1-introduction-ict-agricultural-development
https://www.ictinagriculture.org/sourcebook/module-1-introduction-ict-agricultural-development

